Long-lived state in a four-spin system hyperpolarized at room temperature

A solution with hyperpolarized nuclear spins encoded into a long-lived state has been utilized for sensing chemical phenomena. In a conventional way, nuclear spins are hyperpolarized at very low temperatures. In this work, we demonstrate the encoding of a four-nuclear-spin system hyperpolarized at r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2020-06, Vol.5 (2)
Hauptverfasser: Layden, David, Huang, Louisa Ruixue, Cappellaro, Paola, Kagawa, Akinori, Negoro, Makoto, Kitagawa, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Quantum science and technology
container_volume 5
creator Layden, David
Huang, Louisa Ruixue
Cappellaro, Paola
Kagawa, Akinori
Negoro, Makoto
Kitagawa, Masahiro
description A solution with hyperpolarized nuclear spins encoded into a long-lived state has been utilized for sensing chemical phenomena. In a conventional way, nuclear spins are hyperpolarized at very low temperatures. In this work, we demonstrate the encoding of a four-nuclear-spin system hyperpolarized at room temperature into a long-lived state in a solution. We apply the solution with the long-lived state as a sensor in ligand-receptor binding experiments.
doi_str_mv 10.1088/2058-9565/ab79b2
10.1088/2058-9565/ab7734
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_2058_9565_ab79b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstab7734</sourcerecordid><originalsourceid>FETCH-iop_journals_10_1088_2058_9565_ab77343</originalsourceid><addsrcrecordid>eNqVjzELwjAQRoMgKOrumMnJ6iUx2s6iKDi6HxFTbWmbmERBf70piJOL0x3fPT7eETJmMGOQpnMOMk0yuZRzdVplJ94h_W_UIyPvSwAQnLEMln2yP5jmklTFQ5-pDypoWjRU0dzcXeJt3P3TB13T69NqZ02lXPGKqArUGVPTeIq5Cnenh6Sbq8rr0WcOyHS7Oa53SWEslrGviSkywNYSWyVslTBarsRC_IHHp8Tf7ZMf-M0HlMgRuARYoD3n4g0vL2Bk</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-lived state in a four-spin system hyperpolarized at room temperature</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Layden, David ; Huang, Louisa Ruixue ; Cappellaro, Paola ; Kagawa, Akinori ; Negoro, Makoto ; Kitagawa, Masahiro</creator><creatorcontrib>Layden, David ; Huang, Louisa Ruixue ; Cappellaro, Paola ; Kagawa, Akinori ; Negoro, Makoto ; Kitagawa, Masahiro</creatorcontrib><description>A solution with hyperpolarized nuclear spins encoded into a long-lived state has been utilized for sensing chemical phenomena. In a conventional way, nuclear spins are hyperpolarized at very low temperatures. In this work, we demonstrate the encoding of a four-nuclear-spin system hyperpolarized at room temperature into a long-lived state in a solution. We apply the solution with the long-lived state as a sensor in ligand-receptor binding experiments.</description><description>Quantum error correction (QEC) codes are usually designed to correct errors regardless of their physical origins. In large-scale devices, this is an essential feature. In smaller-scale devices, however, the main error sources are often understood, and this knowledge could be exploited for more efficient error correction. Optimizing the QEC protocol is therefore a promising strategy in smaller devices. Typically, this involves tailoring the protocol to a given decoherence channel by solving an appropriate optimization problem. Here we introduce a new optimization-based approach, which maximizes the robustness to faults in the recovery. Our approach is inspired by recent experiments, where such faults have been a significant source of logical errors. We illustrate this approach with a three-qubit model, and show how near-term experiments could benefit from more robust QEC protocols.</description><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ab79b2</identifier><identifier>DOI: 10.1088/2058-9565/ab7734</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>decoherence ; long-lived state ; quantum computing ; quantum error correction ; quantum technology ; robustness ; room temperature hyperpolarization ; triplet-DNP</subject><ispartof>Quantum science and technology, 2020-06, Vol.5 (2)</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1292-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/ab79b2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Layden, David</creatorcontrib><creatorcontrib>Huang, Louisa Ruixue</creatorcontrib><creatorcontrib>Cappellaro, Paola</creatorcontrib><creatorcontrib>Kagawa, Akinori</creatorcontrib><creatorcontrib>Negoro, Makoto</creatorcontrib><creatorcontrib>Kitagawa, Masahiro</creatorcontrib><title>Long-lived state in a four-spin system hyperpolarized at room temperature</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>A solution with hyperpolarized nuclear spins encoded into a long-lived state has been utilized for sensing chemical phenomena. In a conventional way, nuclear spins are hyperpolarized at very low temperatures. In this work, we demonstrate the encoding of a four-nuclear-spin system hyperpolarized at room temperature into a long-lived state in a solution. We apply the solution with the long-lived state as a sensor in ligand-receptor binding experiments.</description><description>Quantum error correction (QEC) codes are usually designed to correct errors regardless of their physical origins. In large-scale devices, this is an essential feature. In smaller-scale devices, however, the main error sources are often understood, and this knowledge could be exploited for more efficient error correction. Optimizing the QEC protocol is therefore a promising strategy in smaller devices. Typically, this involves tailoring the protocol to a given decoherence channel by solving an appropriate optimization problem. Here we introduce a new optimization-based approach, which maximizes the robustness to faults in the recovery. Our approach is inspired by recent experiments, where such faults have been a significant source of logical errors. We illustrate this approach with a three-qubit model, and show how near-term experiments could benefit from more robust QEC protocols.</description><subject>decoherence</subject><subject>long-lived state</subject><subject>quantum computing</subject><subject>quantum error correction</subject><subject>quantum technology</subject><subject>robustness</subject><subject>room temperature hyperpolarization</subject><subject>triplet-DNP</subject><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVjzELwjAQRoMgKOrumMnJ6iUx2s6iKDi6HxFTbWmbmERBf70piJOL0x3fPT7eETJmMGOQpnMOMk0yuZRzdVplJ94h_W_UIyPvSwAQnLEMln2yP5jmklTFQ5-pDypoWjRU0dzcXeJt3P3TB13T69NqZ02lXPGKqArUGVPTeIq5Cnenh6Sbq8rr0WcOyHS7Oa53SWEslrGviSkywNYSWyVslTBarsRC_IHHp8Tf7ZMf-M0HlMgRuARYoD3n4g0vL2Bk</recordid><startdate>20200602</startdate><startdate>20200317</startdate><enddate>20200602</enddate><enddate>20200317</enddate><creator>Layden, David</creator><creator>Huang, Louisa Ruixue</creator><creator>Cappellaro, Paola</creator><creator>Kagawa, Akinori</creator><creator>Negoro, Makoto</creator><creator>Kitagawa, Masahiro</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0002-1292-9007</orcidid></search><sort><creationdate>20200602</creationdate><title>Long-lived state in a four-spin system hyperpolarized at room temperature</title><title>Robustness-optimized quantum error correction</title><author>Layden, David ; Huang, Louisa Ruixue ; Cappellaro, Paola ; Kagawa, Akinori ; Negoro, Makoto ; Kitagawa, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-iop_journals_10_1088_2058_9565_ab77343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>decoherence</topic><topic>long-lived state</topic><topic>quantum computing</topic><topic>quantum error correction</topic><topic>quantum technology</topic><topic>robustness</topic><topic>room temperature hyperpolarization</topic><topic>triplet-DNP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Layden, David</creatorcontrib><creatorcontrib>Huang, Louisa Ruixue</creatorcontrib><creatorcontrib>Cappellaro, Paola</creatorcontrib><creatorcontrib>Kagawa, Akinori</creatorcontrib><creatorcontrib>Negoro, Makoto</creatorcontrib><creatorcontrib>Kitagawa, Masahiro</creatorcontrib><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Layden, David</au><au>Huang, Louisa Ruixue</au><au>Cappellaro, Paola</au><au>Kagawa, Akinori</au><au>Negoro, Makoto</au><au>Kitagawa, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-lived state in a four-spin system hyperpolarized at room temperature</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2020-06-02</date><date>2020-03-17</date><risdate>2020</risdate><risdate>2020</risdate><volume>5</volume><issue>2</issue><eissn>2058-9565</eissn><abstract>A solution with hyperpolarized nuclear spins encoded into a long-lived state has been utilized for sensing chemical phenomena. In a conventional way, nuclear spins are hyperpolarized at very low temperatures. In this work, we demonstrate the encoding of a four-nuclear-spin system hyperpolarized at room temperature into a long-lived state in a solution. We apply the solution with the long-lived state as a sensor in ligand-receptor binding experiments.</abstract><abstract>Quantum error correction (QEC) codes are usually designed to correct errors regardless of their physical origins. In large-scale devices, this is an essential feature. In smaller-scale devices, however, the main error sources are often understood, and this knowledge could be exploited for more efficient error correction. Optimizing the QEC protocol is therefore a promising strategy in smaller devices. Typically, this involves tailoring the protocol to a given decoherence channel by solving an appropriate optimization problem. Here we introduce a new optimization-based approach, which maximizes the robustness to faults in the recovery. Our approach is inspired by recent experiments, where such faults have been a significant source of logical errors. We illustrate this approach with a three-qubit model, and show how near-term experiments could benefit from more robust QEC protocols.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/ab79b2</doi><doi>10.1088/2058-9565/ab7734</doi><tpages>7</tpages><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1292-9007</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2058-9565
ispartof Quantum science and technology, 2020-06, Vol.5 (2)
issn 2058-9565
language eng
recordid cdi_iop_journals_10_1088_2058_9565_ab79b2
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects decoherence
long-lived state
quantum computing
quantum error correction
quantum technology
robustness
room temperature hyperpolarization
triplet-DNP
title Long-lived state in a four-spin system hyperpolarized at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-lived%20state%20in%20a%20four-spin%20system%20hyperpolarized%20at%20room%20temperature&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Layden,%20David&rft.date=2020-06-02&rft.volume=5&rft.issue=2&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/ab79b2&rft_dat=%3Ciop%3Eqstab7734%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true