Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic
Top-gate thin-film transistors (TFTs) are fabricated on plastic using a self-aligned method based on capillarity-assisted lithography and inkjet printing, offering a promising platform for high-throughput manufacturing of flexible electronic devices. Plastic substrates are imprinted with a multi-tie...
Gespeichert in:
Veröffentlicht in: | Flexible and printed electronics 2018-09, Vol.3 (3), p.35004 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Top-gate thin-film transistors (TFTs) are fabricated on plastic using a self-aligned method based on capillarity-assisted lithography and inkjet printing, offering a promising platform for high-throughput manufacturing of flexible electronic devices. Plastic substrates are imprinted with a multi-tier structure containing capillary channels and ink receivers using a precision mold. Liquid inks are sequentially delivered to the microstructured substrate by inkjet printing, and capillary action draws the inks into a multi-tier capillary channel network designed for top-gate TFTs. The combination of imprinting, inkjet printing, and capillary flow yields self-aligned multi-layered devices without requiring precise registration for inkjet printing. The printed top-gate TFTs with Ag/Cu source and drain, poly(3-hexylthiophene) semiconducting channel, ion gel dielectric, and graphene gate electrode have desirable transfer and output characteristics, with a hole mobility of 0.48 cm2 V−1 s−1, threshold voltage of −0.86 V, on/off current ratio of 104.5, and robust tolerance to bending. The top-gate geometry and careful materials selection yields devices with negligible hysteresis and sweep rate dependence, establishing the versatility and utility of this self-aligned strategy for more widespread application in printed and flexible electronics. |
---|---|
ISSN: | 2058-8585 2058-8585 |
DOI: | 10.1088/2058-8585/aad476 |