A new model of the L-H transition and H-mode power threshold

In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma, a new dynamical model of the L-H transition based on edge instability phase transition (EIPT) has been developed. With the typical plasma parameters of the EAST tokamak, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma science & technology 2018-09, Vol.20 (9), p.94003
Hauptverfasser: WU, Xingquan, XU, Guosheng, WAN, Baonian, RASMUSSEN, Jens Juul, NAULIN, Volker, NIELSEN, Anders Henry, CHEN, Liang, CHEN, Ran, YAN, Ning, SHAO, Linming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 94003
container_title Plasma science & technology
container_volume 20
creator WU, Xingquan
XU, Guosheng
WAN, Baonian
RASMUSSEN, Jens Juul
NAULIN, Volker
NIELSEN, Anders Henry
CHEN, Liang
CHEN, Ran
YAN, Ning
SHAO, Linming
description In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma, a new dynamical model of the L-H transition based on edge instability phase transition (EIPT) has been developed. With the typical plasma parameters of the EAST tokamak, the self-consistent turbulence growth rate is analyzed using the simplest case of pressure-driven ballooning-type instability, which indicates that the L-H transition can be caused by the stabilization of the edge instability through EIPT. The weak E × B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by increasing the radial wave number of the tilted turbulence structures, which play an important role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent transport. With the acceleration mechanism of E × B flow shear, fast L-H and H-L transitions are demonstrated under the control of the input heating power. Due to the simplified scrape-off-layer boundary condition applied, the ratio between the heating powers at the H-L and L-H transition respectively differs from the ratio by Nusselt number. The results of the modeling reveal a scaling of the power threshold of the L-H transition, PL−H ∝ n0.76B0.8 for deuterium plasma. It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.
doi_str_mv 10.1088/2058-6272/aabb9e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2058_6272_aabb9e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pstaabb9e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f7af53d26077f2619fcec6e0a41cc555a3ebc83c2f5ab4ad9fe22fed917024643</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqWwM3pjwfRsx0kssVQVUKRKLDBbjn1WU7VxZAdV_HsSlYEBpnvD957uI-SWwwOHul4IUDUrRSUW1jaNxjMy4wCaQSnh_Fe-JFc57wBUoWs5I49L2uGRHqLHPY2BDlukG7amQ7Jdboc2dtR2nq7ZRNA-HjGNTMK8jXt_TS6C3We8-blz8vH89L5as83by-tquWFOcjGwUNmgpBclVFUQJdfBoSsRbMGdU0pZiY2rpRNB2aawXgcUIqDXvAJRlIWcEzjtuhRzThhMn9qDTV-Gg5nszWRvJntzsh8rd6dKG3uzi5-pGx80fR5G1GgDugCQpvdhJO__IP8d_gY5pGjv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new model of the L-H transition and H-mode power threshold</title><source>Institute of Physics Journals</source><creator>WU, Xingquan ; XU, Guosheng ; WAN, Baonian ; RASMUSSEN, Jens Juul ; NAULIN, Volker ; NIELSEN, Anders Henry ; CHEN, Liang ; CHEN, Ran ; YAN, Ning ; SHAO, Linming</creator><creatorcontrib>WU, Xingquan ; XU, Guosheng ; WAN, Baonian ; RASMUSSEN, Jens Juul ; NAULIN, Volker ; NIELSEN, Anders Henry ; CHEN, Liang ; CHEN, Ran ; YAN, Ning ; SHAO, Linming</creatorcontrib><description>In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma, a new dynamical model of the L-H transition based on edge instability phase transition (EIPT) has been developed. With the typical plasma parameters of the EAST tokamak, the self-consistent turbulence growth rate is analyzed using the simplest case of pressure-driven ballooning-type instability, which indicates that the L-H transition can be caused by the stabilization of the edge instability through EIPT. The weak E × B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by increasing the radial wave number of the tilted turbulence structures, which play an important role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent transport. With the acceleration mechanism of E × B flow shear, fast L-H and H-L transitions are demonstrated under the control of the input heating power. Due to the simplified scrape-off-layer boundary condition applied, the ratio between the heating powers at the H-L and L-H transition respectively differs from the ratio by Nusselt number. The results of the modeling reveal a scaling of the power threshold of the L-H transition, PL−H ∝ n0.76B0.8 for deuterium plasma. It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.</description><identifier>ISSN: 1009-0630</identifier><identifier>EISSN: 1009-0630</identifier><identifier>DOI: 10.1088/2058-6272/aabb9e</identifier><identifier>CODEN: PSTHC3</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>edge instability ; flow shear ; L-H transition ; power threshold ; turbulence suppression</subject><ispartof>Plasma science &amp; technology, 2018-09, Vol.20 (9), p.94003</ispartof><rights>2018 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f7af53d26077f2619fcec6e0a41cc555a3ebc83c2f5ab4ad9fe22fed917024643</citedby><cites>FETCH-LOGICAL-c312t-f7af53d26077f2619fcec6e0a41cc555a3ebc83c2f5ab4ad9fe22fed917024643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-6272/aabb9e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>WU, Xingquan</creatorcontrib><creatorcontrib>XU, Guosheng</creatorcontrib><creatorcontrib>WAN, Baonian</creatorcontrib><creatorcontrib>RASMUSSEN, Jens Juul</creatorcontrib><creatorcontrib>NAULIN, Volker</creatorcontrib><creatorcontrib>NIELSEN, Anders Henry</creatorcontrib><creatorcontrib>CHEN, Liang</creatorcontrib><creatorcontrib>CHEN, Ran</creatorcontrib><creatorcontrib>YAN, Ning</creatorcontrib><creatorcontrib>SHAO, Linming</creatorcontrib><title>A new model of the L-H transition and H-mode power threshold</title><title>Plasma science &amp; technology</title><addtitle>PST</addtitle><addtitle>Plasma Sci. Technol</addtitle><description>In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma, a new dynamical model of the L-H transition based on edge instability phase transition (EIPT) has been developed. With the typical plasma parameters of the EAST tokamak, the self-consistent turbulence growth rate is analyzed using the simplest case of pressure-driven ballooning-type instability, which indicates that the L-H transition can be caused by the stabilization of the edge instability through EIPT. The weak E × B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by increasing the radial wave number of the tilted turbulence structures, which play an important role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent transport. With the acceleration mechanism of E × B flow shear, fast L-H and H-L transitions are demonstrated under the control of the input heating power. Due to the simplified scrape-off-layer boundary condition applied, the ratio between the heating powers at the H-L and L-H transition respectively differs from the ratio by Nusselt number. The results of the modeling reveal a scaling of the power threshold of the L-H transition, PL−H ∝ n0.76B0.8 for deuterium plasma. It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.</description><subject>edge instability</subject><subject>flow shear</subject><subject>L-H transition</subject><subject>power threshold</subject><subject>turbulence suppression</subject><issn>1009-0630</issn><issn>1009-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqWwM3pjwfRsx0kssVQVUKRKLDBbjn1WU7VxZAdV_HsSlYEBpnvD957uI-SWwwOHul4IUDUrRSUW1jaNxjMy4wCaQSnh_Fe-JFc57wBUoWs5I49L2uGRHqLHPY2BDlukG7amQ7Jdboc2dtR2nq7ZRNA-HjGNTMK8jXt_TS6C3We8-blz8vH89L5as83by-tquWFOcjGwUNmgpBclVFUQJdfBoSsRbMGdU0pZiY2rpRNB2aawXgcUIqDXvAJRlIWcEzjtuhRzThhMn9qDTV-Gg5nszWRvJntzsh8rd6dKG3uzi5-pGx80fR5G1GgDugCQpvdhJO__IP8d_gY5pGjv</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>WU, Xingquan</creator><creator>XU, Guosheng</creator><creator>WAN, Baonian</creator><creator>RASMUSSEN, Jens Juul</creator><creator>NAULIN, Volker</creator><creator>NIELSEN, Anders Henry</creator><creator>CHEN, Liang</creator><creator>CHEN, Ran</creator><creator>YAN, Ning</creator><creator>SHAO, Linming</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>A new model of the L-H transition and H-mode power threshold</title><author>WU, Xingquan ; XU, Guosheng ; WAN, Baonian ; RASMUSSEN, Jens Juul ; NAULIN, Volker ; NIELSEN, Anders Henry ; CHEN, Liang ; CHEN, Ran ; YAN, Ning ; SHAO, Linming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f7af53d26077f2619fcec6e0a41cc555a3ebc83c2f5ab4ad9fe22fed917024643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>edge instability</topic><topic>flow shear</topic><topic>L-H transition</topic><topic>power threshold</topic><topic>turbulence suppression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WU, Xingquan</creatorcontrib><creatorcontrib>XU, Guosheng</creatorcontrib><creatorcontrib>WAN, Baonian</creatorcontrib><creatorcontrib>RASMUSSEN, Jens Juul</creatorcontrib><creatorcontrib>NAULIN, Volker</creatorcontrib><creatorcontrib>NIELSEN, Anders Henry</creatorcontrib><creatorcontrib>CHEN, Liang</creatorcontrib><creatorcontrib>CHEN, Ran</creatorcontrib><creatorcontrib>YAN, Ning</creatorcontrib><creatorcontrib>SHAO, Linming</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WU, Xingquan</au><au>XU, Guosheng</au><au>WAN, Baonian</au><au>RASMUSSEN, Jens Juul</au><au>NAULIN, Volker</au><au>NIELSEN, Anders Henry</au><au>CHEN, Liang</au><au>CHEN, Ran</au><au>YAN, Ning</au><au>SHAO, Linming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new model of the L-H transition and H-mode power threshold</atitle><jtitle>Plasma science &amp; technology</jtitle><stitle>PST</stitle><addtitle>Plasma Sci. Technol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>20</volume><issue>9</issue><spage>94003</spage><pages>94003-</pages><issn>1009-0630</issn><eissn>1009-0630</eissn><coden>PSTHC3</coden><abstract>In order to understand the mechanism of the confinement bifurcation and H-mode power threshold in magnetically confined plasma, a new dynamical model of the L-H transition based on edge instability phase transition (EIPT) has been developed. With the typical plasma parameters of the EAST tokamak, the self-consistent turbulence growth rate is analyzed using the simplest case of pressure-driven ballooning-type instability, which indicates that the L-H transition can be caused by the stabilization of the edge instability through EIPT. The weak E × B flow shear in L-mode is able to increase the ion inertia of the electrostatic motion by increasing the radial wave number of the tilted turbulence structures, which play an important role for accelerating the trigger process of EIPT rather than directly to suppress the turbulent transport. With the acceleration mechanism of E × B flow shear, fast L-H and H-L transitions are demonstrated under the control of the input heating power. Due to the simplified scrape-off-layer boundary condition applied, the ratio between the heating powers at the H-L and L-H transition respectively differs from the ratio by Nusselt number. The results of the modeling reveal a scaling of the power threshold of the L-H transition, PL−H ∝ n0.76B0.8 for deuterium plasma. It is found finite Larmor radius induces an isotope effect of the H-mode power threshold.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-6272/aabb9e</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-0630
ispartof Plasma science & technology, 2018-09, Vol.20 (9), p.94003
issn 1009-0630
1009-0630
language eng
recordid cdi_iop_journals_10_1088_2058_6272_aabb9e
source Institute of Physics Journals
subjects edge instability
flow shear
L-H transition
power threshold
turbulence suppression
title A new model of the L-H transition and H-mode power threshold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20model%20of%20the%20L-H%20transition%20and%20H-mode%20power%20threshold&rft.jtitle=Plasma%20science%20&%20technology&rft.au=WU,%20Xingquan&rft.date=2018-09-01&rft.volume=20&rft.issue=9&rft.spage=94003&rft.pages=94003-&rft.issn=1009-0630&rft.eissn=1009-0630&rft.coden=PSTHC3&rft_id=info:doi/10.1088/2058-6272/aabb9e&rft_dat=%3Ciop_cross%3Epstaabb9e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true