Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water

Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2024-07, Vol.10 (4), p.45016
Hauptverfasser: Irmak, Seyma Ecem, Ozdemir, Gizem Dilara, Ozdemir, Mehmet Akif, Ercan, Utku Kürşat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45016
container_title Biomedical physics & engineering express
container_volume 10
creator Irmak, Seyma Ecem
Ozdemir, Gizem Dilara
Ozdemir, Mehmet Akif
Ercan, Utku Kürşat
description Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how the oxidative power of ROS responds to diverse plasma parameters is vital for standardizing the effective application of CAP. The proven applicability of machine learning (ML) in the field of medicine is encouraging, as it can also be applied in the field of plasma medicine to correlate the oxidative strength of plasma-treated water (PTW) according to different parameters. In this study, plasma-treated water was mixed with potassium iodide-starch reagent for color formation that could be linked to the oxidative capacity of PTW. Corresponding images were captured resulting from the exposure of the color-forming agent to water treated with plasma for different time points. Several ML models were trained to distinguish the color changes sourced by the oxidative strength of ROS. The AdaBoost Classifier (ABC) algorithm demonstrated better performance among the classification models used by extracting color-based features from the images. Our results, with a test accuracy of 63.5%, might carry a potential for future standardization in the field of plasma medicine with an automated system that can be created to interpret the oxidative properties of ROS in different plasma treatment parameters via ML.
doi_str_mv 10.1088/2057-1976/ad464f
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2057_1976_ad464f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050939249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-cdfb383e2de815ade3a7db32354bef055d39a214982cc01eced2150ca39ba9af3</originalsourceid><addsrcrecordid>eNp9kUlLxTAURoMoKurelXTpwmqGpq9ZijiB4kbX8Ta59UXapiatw7835am4EDcZLuf7ICeE7DN6zGhVnXAqFzlTi_IEbFEWzRrZ_hmt_zpvkb0YnymlrORlqeQm2RJVqRaUq23yeAtm6XrMWoTQu_4pB2fRZvgK7QSj833mm8y_O5sur5jFMWD_NC7nqfGtzWDsfByWGJzJhhZiB3lCYEwdb2kNu2SjgTbi3te-Qx4uzu_PrvKbu8vrs9Ob3AjOx9zYphaVQG6xYhIsCljYWnAhixobKqUVCjgrVMWNoQwNWs4kNSBUDQoasUMOV71D8C8TxlF3LhpsW-jRT1ELKqkSihcqoXSFmuBjDNjoIbgOwodmVM9q9exOz-70Sm2KHHy1T3WH9ifwLTIBRyvA-UE_-yn06bH_9R3-gdcDvs-ZQtNCpu_Sg23EJ1bzkf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050939249</pqid></control><display><type>article</type><title>Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Irmak, Seyma Ecem ; Ozdemir, Gizem Dilara ; Ozdemir, Mehmet Akif ; Ercan, Utku Kürşat</creator><creatorcontrib>Irmak, Seyma Ecem ; Ozdemir, Gizem Dilara ; Ozdemir, Mehmet Akif ; Ercan, Utku Kürşat</creatorcontrib><description>Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how the oxidative power of ROS responds to diverse plasma parameters is vital for standardizing the effective application of CAP. The proven applicability of machine learning (ML) in the field of medicine is encouraging, as it can also be applied in the field of plasma medicine to correlate the oxidative strength of plasma-treated water (PTW) according to different parameters. In this study, plasma-treated water was mixed with potassium iodide-starch reagent for color formation that could be linked to the oxidative capacity of PTW. Corresponding images were captured resulting from the exposure of the color-forming agent to water treated with plasma for different time points. Several ML models were trained to distinguish the color changes sourced by the oxidative strength of ROS. The AdaBoost Classifier (ABC) algorithm demonstrated better performance among the classification models used by extracting color-based features from the images. Our results, with a test accuracy of 63.5%, might carry a potential for future standardization in the field of plasma medicine with an automated system that can be created to interpret the oxidative properties of ROS in different plasma treatment parameters via ML.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/ad464f</identifier><identifier>PMID: 38697029</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; artificial intelligence ; Color ; colorimetric solution ; Machine Learning ; Oxidation-Reduction ; Plasma Gases - chemistry ; plasma medicine ; Reactive Oxygen Species ; standardization ; Water - chemistry</subject><ispartof>Biomedical physics &amp; engineering express, 2024-07, Vol.10 (4), p.45016</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-cdfb383e2de815ade3a7db32354bef055d39a214982cc01eced2150ca39ba9af3</cites><orcidid>0000-0002-8758-113X ; 0009-0007-1673-8850 ; 0000-0002-9762-2265 ; 0000-0002-3682-3733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/ad464f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38697029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irmak, Seyma Ecem</creatorcontrib><creatorcontrib>Ozdemir, Gizem Dilara</creatorcontrib><creatorcontrib>Ozdemir, Mehmet Akif</creatorcontrib><creatorcontrib>Ercan, Utku Kürşat</creatorcontrib><title>Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water</title><title>Biomedical physics &amp; engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how the oxidative power of ROS responds to diverse plasma parameters is vital for standardizing the effective application of CAP. The proven applicability of machine learning (ML) in the field of medicine is encouraging, as it can also be applied in the field of plasma medicine to correlate the oxidative strength of plasma-treated water (PTW) according to different parameters. In this study, plasma-treated water was mixed with potassium iodide-starch reagent for color formation that could be linked to the oxidative capacity of PTW. Corresponding images were captured resulting from the exposure of the color-forming agent to water treated with plasma for different time points. Several ML models were trained to distinguish the color changes sourced by the oxidative strength of ROS. The AdaBoost Classifier (ABC) algorithm demonstrated better performance among the classification models used by extracting color-based features from the images. Our results, with a test accuracy of 63.5%, might carry a potential for future standardization in the field of plasma medicine with an automated system that can be created to interpret the oxidative properties of ROS in different plasma treatment parameters via ML.</description><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>Color</subject><subject>colorimetric solution</subject><subject>Machine Learning</subject><subject>Oxidation-Reduction</subject><subject>Plasma Gases - chemistry</subject><subject>plasma medicine</subject><subject>Reactive Oxygen Species</subject><subject>standardization</subject><subject>Water - chemistry</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlLxTAURoMoKurelXTpwmqGpq9ZijiB4kbX8Ta59UXapiatw7835am4EDcZLuf7ICeE7DN6zGhVnXAqFzlTi_IEbFEWzRrZ_hmt_zpvkb0YnymlrORlqeQm2RJVqRaUq23yeAtm6XrMWoTQu_4pB2fRZvgK7QSj833mm8y_O5sur5jFMWD_NC7nqfGtzWDsfByWGJzJhhZiB3lCYEwdb2kNu2SjgTbi3te-Qx4uzu_PrvKbu8vrs9Ob3AjOx9zYphaVQG6xYhIsCljYWnAhixobKqUVCjgrVMWNoQwNWs4kNSBUDQoasUMOV71D8C8TxlF3LhpsW-jRT1ELKqkSihcqoXSFmuBjDNjoIbgOwodmVM9q9exOz-70Sm2KHHy1T3WH9ifwLTIBRyvA-UE_-yn06bH_9R3-gdcDvs-ZQtNCpu_Sg23EJ1bzkf0</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Irmak, Seyma Ecem</creator><creator>Ozdemir, Gizem Dilara</creator><creator>Ozdemir, Mehmet Akif</creator><creator>Ercan, Utku Kürşat</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8758-113X</orcidid><orcidid>https://orcid.org/0009-0007-1673-8850</orcidid><orcidid>https://orcid.org/0000-0002-9762-2265</orcidid><orcidid>https://orcid.org/0000-0002-3682-3733</orcidid></search><sort><creationdate>20240701</creationdate><title>Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water</title><author>Irmak, Seyma Ecem ; Ozdemir, Gizem Dilara ; Ozdemir, Mehmet Akif ; Ercan, Utku Kürşat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-cdfb383e2de815ade3a7db32354bef055d39a214982cc01eced2150ca39ba9af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>Color</topic><topic>colorimetric solution</topic><topic>Machine Learning</topic><topic>Oxidation-Reduction</topic><topic>Plasma Gases - chemistry</topic><topic>plasma medicine</topic><topic>Reactive Oxygen Species</topic><topic>standardization</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irmak, Seyma Ecem</creatorcontrib><creatorcontrib>Ozdemir, Gizem Dilara</creatorcontrib><creatorcontrib>Ozdemir, Mehmet Akif</creatorcontrib><creatorcontrib>Ercan, Utku Kürşat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical physics &amp; engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irmak, Seyma Ecem</au><au>Ozdemir, Gizem Dilara</au><au>Ozdemir, Mehmet Akif</au><au>Ercan, Utku Kürşat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water</atitle><jtitle>Biomedical physics &amp; engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>45016</spage><pages>45016-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><abstract>Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how the oxidative power of ROS responds to diverse plasma parameters is vital for standardizing the effective application of CAP. The proven applicability of machine learning (ML) in the field of medicine is encouraging, as it can also be applied in the field of plasma medicine to correlate the oxidative strength of plasma-treated water (PTW) according to different parameters. In this study, plasma-treated water was mixed with potassium iodide-starch reagent for color formation that could be linked to the oxidative capacity of PTW. Corresponding images were captured resulting from the exposure of the color-forming agent to water treated with plasma for different time points. Several ML models were trained to distinguish the color changes sourced by the oxidative strength of ROS. The AdaBoost Classifier (ABC) algorithm demonstrated better performance among the classification models used by extracting color-based features from the images. Our results, with a test accuracy of 63.5%, might carry a potential for future standardization in the field of plasma medicine with an automated system that can be created to interpret the oxidative properties of ROS in different plasma treatment parameters via ML.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38697029</pmid><doi>10.1088/2057-1976/ad464f</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8758-113X</orcidid><orcidid>https://orcid.org/0009-0007-1673-8850</orcidid><orcidid>https://orcid.org/0000-0002-9762-2265</orcidid><orcidid>https://orcid.org/0000-0002-3682-3733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2057-1976
ispartof Biomedical physics & engineering express, 2024-07, Vol.10 (4), p.45016
issn 2057-1976
2057-1976
language eng
recordid cdi_iop_journals_10_1088_2057_1976_ad464f
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
artificial intelligence
Color
colorimetric solution
Machine Learning
Oxidation-Reduction
Plasma Gases - chemistry
plasma medicine
Reactive Oxygen Species
standardization
Water - chemistry
title Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-aided%20evaluation%20of%20oxidative%20strength%20of%20cold%20atmospheric%20plasma-treated%20water&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Irmak,%20Seyma%20Ecem&rft.date=2024-07-01&rft.volume=10&rft.issue=4&rft.spage=45016&rft.pages=45016-&rft.issn=2057-1976&rft.eissn=2057-1976&rft_id=info:doi/10.1088/2057-1976/ad464f&rft_dat=%3Cproquest_iop_j%3E3050939249%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050939249&rft_id=info:pmid/38697029&rfr_iscdi=true