Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning

We present a method of directly optimizing on deviations in clinical goal values in radiation therapy treatment planning. Using a new mathematical framework in which metrics derived from the dose–volume histogram are regarded as functionals of an auxiliary random variable, we are able to obtain volu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2020-11, Vol.6 (6), p.65018
Hauptverfasser: Zhang, Tianfang, Bokrantz, Rasmus, Olsson, Jimmy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65018
container_title Biomedical physics & engineering express
container_volume 6
creator Zhang, Tianfang
Bokrantz, Rasmus
Olsson, Jimmy
description We present a method of directly optimizing on deviations in clinical goal values in radiation therapy treatment planning. Using a new mathematical framework in which metrics derived from the dose–volume histogram are regarded as functionals of an auxiliary random variable, we are able to obtain volume-at-dose and dose-at-volume as infinitely differentiable functions of the dose distribution with easily evaluable function values and gradients. Motivated by the connection to risk measures in finance, which is formalized in this framework, we also derive closed-form formulas for mean-tail-dose and demonstrate its capability of reducing extreme dose values in tail distributions. Numerical experiments performed on a prostate and a head-and-neck patient case show that the direct optimization of dose–volume histogram metrics produced marginally better results than or outperformed conventional planning objectives in terms of clinical goal fulfilment, control of low- and high-dose tails of target distributions and general plan quality defined by a pre-specified evaluation measure. The proposed framework eliminates the disconnect between optimization functions and evaluation metrics and may thus reduce the need for repetitive user interaction associated with conventional treatment planning. The method also has the potential of enhancing plan optimization in other settings such as multicriteria optimization and automated treatment planning.
doi_str_mv 10.1088/2057-1976/abb5ea
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_2057_1976_abb5ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2532254142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7cfea4c1699a0cf3969e7e2710e7455cf50717d06ed123bf787b05ab6fb8ec823</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRSMEEgjoKd1BQcB2YjspEW8JiQYosRxnvGvYxMZ2eFX8A3_Il7BLEKJAaIoZjc69mrlZtkXwHsFVtU8xEzmpBd9XTcNALWVrP6vlX_NqthnjHcaYcMp5zday2yMbQCfkfLKdfVXJuh45g1oX4ePt_dHNhg7Q1MbkJkF1qIMUrI7I9iio1o58mkJQ_gWlACp10CfkZ6rvbT_ZyFaMmkXY_O7r2fXJ8dXhWX5xeXp-eHCR66IqUi60AVVqwutaYW2KmtcggAqCQZSMacOwIKLFHFpCi8aISjSYqYabpgJd0WI9y0ff-AR-aKQPtlPhRTpl5ZG9OZAuTOR9mkpalcUXvzPyPriHAWKSnY0aZvOzwQ1RUlZQykpSLlA8ojq4GAOYH3OC5SJ9uYhXLuKVY_pzye4osc7LOzeEfv77f_j2H3jj4VnyeWHOMKmkb03xCTYtl2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532254142</pqid></control><display><type>article</type><title>Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning</title><source>Institute of Physics Journals</source><creator>Zhang, Tianfang ; Bokrantz, Rasmus ; Olsson, Jimmy</creator><creatorcontrib>Zhang, Tianfang ; Bokrantz, Rasmus ; Olsson, Jimmy</creatorcontrib><description>We present a method of directly optimizing on deviations in clinical goal values in radiation therapy treatment planning. Using a new mathematical framework in which metrics derived from the dose–volume histogram are regarded as functionals of an auxiliary random variable, we are able to obtain volume-at-dose and dose-at-volume as infinitely differentiable functions of the dose distribution with easily evaluable function values and gradients. Motivated by the connection to risk measures in finance, which is formalized in this framework, we also derive closed-form formulas for mean-tail-dose and demonstrate its capability of reducing extreme dose values in tail distributions. Numerical experiments performed on a prostate and a head-and-neck patient case show that the direct optimization of dose–volume histogram metrics produced marginally better results than or outperformed conventional planning objectives in terms of clinical goal fulfilment, control of low- and high-dose tails of target distributions and general plan quality defined by a pre-specified evaluation measure. The proposed framework eliminates the disconnect between optimization functions and evaluation metrics and may thus reduce the need for repetitive user interaction associated with conventional treatment planning. The method also has the potential of enhancing plan optimization in other settings such as multicriteria optimization and automated treatment planning.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/abb5ea</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>clinical goals ; dose-volume histogram ; inverse planning ; mean-tail-dose ; objective functions ; smooth approximation</subject><ispartof>Biomedical physics &amp; engineering express, 2020-11, Vol.6 (6), p.65018</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7cfea4c1699a0cf3969e7e2710e7455cf50717d06ed123bf787b05ab6fb8ec823</citedby><cites>FETCH-LOGICAL-c383t-7cfea4c1699a0cf3969e7e2710e7455cf50717d06ed123bf787b05ab6fb8ec823</cites><orcidid>0000-0001-6724-2547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/abb5ea/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284382$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Tianfang</creatorcontrib><creatorcontrib>Bokrantz, Rasmus</creatorcontrib><creatorcontrib>Olsson, Jimmy</creatorcontrib><title>Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning</title><title>Biomedical physics &amp; engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>We present a method of directly optimizing on deviations in clinical goal values in radiation therapy treatment planning. Using a new mathematical framework in which metrics derived from the dose–volume histogram are regarded as functionals of an auxiliary random variable, we are able to obtain volume-at-dose and dose-at-volume as infinitely differentiable functions of the dose distribution with easily evaluable function values and gradients. Motivated by the connection to risk measures in finance, which is formalized in this framework, we also derive closed-form formulas for mean-tail-dose and demonstrate its capability of reducing extreme dose values in tail distributions. Numerical experiments performed on a prostate and a head-and-neck patient case show that the direct optimization of dose–volume histogram metrics produced marginally better results than or outperformed conventional planning objectives in terms of clinical goal fulfilment, control of low- and high-dose tails of target distributions and general plan quality defined by a pre-specified evaluation measure. The proposed framework eliminates the disconnect between optimization functions and evaluation metrics and may thus reduce the need for repetitive user interaction associated with conventional treatment planning. The method also has the potential of enhancing plan optimization in other settings such as multicriteria optimization and automated treatment planning.</description><subject>clinical goals</subject><subject>dose-volume histogram</subject><subject>inverse planning</subject><subject>mean-tail-dose</subject><subject>objective functions</subject><subject>smooth approximation</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRSMEEgjoKd1BQcB2YjspEW8JiQYosRxnvGvYxMZ2eFX8A3_Il7BLEKJAaIoZjc69mrlZtkXwHsFVtU8xEzmpBd9XTcNALWVrP6vlX_NqthnjHcaYcMp5zday2yMbQCfkfLKdfVXJuh45g1oX4ePt_dHNhg7Q1MbkJkF1qIMUrI7I9iio1o58mkJQ_gWlACp10CfkZ6rvbT_ZyFaMmkXY_O7r2fXJ8dXhWX5xeXp-eHCR66IqUi60AVVqwutaYW2KmtcggAqCQZSMacOwIKLFHFpCi8aISjSYqYabpgJd0WI9y0ff-AR-aKQPtlPhRTpl5ZG9OZAuTOR9mkpalcUXvzPyPriHAWKSnY0aZvOzwQ1RUlZQykpSLlA8ojq4GAOYH3OC5SJ9uYhXLuKVY_pzye4osc7LOzeEfv77f_j2H3jj4VnyeWHOMKmkb03xCTYtl2A</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhang, Tianfang</creator><creator>Bokrantz, Rasmus</creator><creator>Olsson, Jimmy</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0001-6724-2547</orcidid></search><sort><creationdate>20201101</creationdate><title>Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning</title><author>Zhang, Tianfang ; Bokrantz, Rasmus ; Olsson, Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7cfea4c1699a0cf3969e7e2710e7455cf50717d06ed123bf787b05ab6fb8ec823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>clinical goals</topic><topic>dose-volume histogram</topic><topic>inverse planning</topic><topic>mean-tail-dose</topic><topic>objective functions</topic><topic>smooth approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianfang</creatorcontrib><creatorcontrib>Bokrantz, Rasmus</creatorcontrib><creatorcontrib>Olsson, Jimmy</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>Biomedical physics &amp; engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianfang</au><au>Bokrantz, Rasmus</au><au>Olsson, Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning</atitle><jtitle>Biomedical physics &amp; engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>6</volume><issue>6</issue><spage>65018</spage><pages>65018-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><abstract>We present a method of directly optimizing on deviations in clinical goal values in radiation therapy treatment planning. Using a new mathematical framework in which metrics derived from the dose–volume histogram are regarded as functionals of an auxiliary random variable, we are able to obtain volume-at-dose and dose-at-volume as infinitely differentiable functions of the dose distribution with easily evaluable function values and gradients. Motivated by the connection to risk measures in finance, which is formalized in this framework, we also derive closed-form formulas for mean-tail-dose and demonstrate its capability of reducing extreme dose values in tail distributions. Numerical experiments performed on a prostate and a head-and-neck patient case show that the direct optimization of dose–volume histogram metrics produced marginally better results than or outperformed conventional planning objectives in terms of clinical goal fulfilment, control of low- and high-dose tails of target distributions and general plan quality defined by a pre-specified evaluation measure. The proposed framework eliminates the disconnect between optimization functions and evaluation metrics and may thus reduce the need for repetitive user interaction associated with conventional treatment planning. The method also has the potential of enhancing plan optimization in other settings such as multicriteria optimization and automated treatment planning.</abstract><pub>IOP Publishing</pub><doi>10.1088/2057-1976/abb5ea</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6724-2547</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2057-1976
ispartof Biomedical physics & engineering express, 2020-11, Vol.6 (6), p.65018
issn 2057-1976
2057-1976
language eng
recordid cdi_iop_journals_10_1088_2057_1976_abb5ea
source Institute of Physics Journals
subjects clinical goals
dose-volume histogram
inverse planning
mean-tail-dose
objective functions
smooth approximation
title Direct optimization of dose–volume histogram metrics in radiation therapy treatment planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20optimization%20of%20dose%E2%80%93volume%20histogram%20metrics%20in%20radiation%20therapy%20treatment%20planning&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Zhang,%20Tianfang&rft.date=2020-11-01&rft.volume=6&rft.issue=6&rft.spage=65018&rft.pages=65018-&rft.issn=2057-1976&rft.eissn=2057-1976&rft_id=info:doi/10.1088/2057-1976/abb5ea&rft_dat=%3Cproquest_iop_j%3E2532254142%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532254142&rft_id=info:pmid/&rfr_iscdi=true