Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT

To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER40...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2019-11, Vol.6 (12), p.126567
Hauptverfasser: Liu, Kun, Chen, Xizhang, Zhang, Yupeng, Pan, Zengxi, Singh, R Arvind, Jayalakshmi, S, Konovalov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 126567
container_title Materials research express
container_volume 6
creator Liu, Kun
Chen, Xizhang
Zhang, Yupeng
Pan, Zengxi
Singh, R Arvind
Jayalakshmi, S
Konovalov, Sergey
description To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.
doi_str_mv 10.1088/2053-1591/ab583e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2053_1591_ab583e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mrxab583e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</originalsourceid><addsrcrecordid>eNp9kMtLxDAQxoMouKx795ibF-smafPocSm-YMXLeg55TLFL25S0Rfvf27IiHkQYmGH4fR8zH0LXlNxRotSWEZ4mlOd0ayxXKZyh1c_q_Nd8iTZ9fySEMJmnnIkVOu6DM0MVWuyhg9ZD6wCHEjeVi6Ef4uiGMQI2rccNuHfTVs7UuIuhgzhU0C9sMSa7Gpu6DhMujY0zMoDHdsJ-nOGPajYoXg5X6KI0dQ-b775Gbw_3h-Ip2b8-Phe7feJSyoakFBkXwioOVljiSCaFUJnIpMoVEC-pyJVLvSQ8z401yklHITOsZJ7nFli6RuTku3zQRyh1F6vGxElTope49JKHXvLQp7hmye1JUoVOH8MY2_nA__CbP_AmfmqhKZtLcCF158v0C8_aeUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Kun ; Chen, Xizhang ; Zhang, Yupeng ; Pan, Zengxi ; Singh, R Arvind ; Jayalakshmi, S ; Konovalov, Sergey</creator><creatorcontrib>Liu, Kun ; Chen, Xizhang ; Zhang, Yupeng ; Pan, Zengxi ; Singh, R Arvind ; Jayalakshmi, S ; Konovalov, Sergey</creatorcontrib><description>To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab583e</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>CMT ; Cu-Al alloy ; dual wire ; mechanical properties ; microstructure</subject><ispartof>Materials research express, 2019-11, Vol.6 (12), p.126567</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</citedby><cites>FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</cites><orcidid>0000-0003-4809-8660 ; 0000-0002-3290-5299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab583e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,53815,53821,53868</link.rule.ids></links><search><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Chen, Xizhang</creatorcontrib><creatorcontrib>Zhang, Yupeng</creatorcontrib><creatorcontrib>Pan, Zengxi</creatorcontrib><creatorcontrib>Singh, R Arvind</creatorcontrib><creatorcontrib>Jayalakshmi, S</creatorcontrib><creatorcontrib>Konovalov, Sergey</creatorcontrib><title>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.</description><subject>CMT</subject><subject>Cu-Al alloy</subject><subject>dual wire</subject><subject>mechanical properties</subject><subject>microstructure</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQxoMouKx795ibF-smafPocSm-YMXLeg55TLFL25S0Rfvf27IiHkQYmGH4fR8zH0LXlNxRotSWEZ4mlOd0ayxXKZyh1c_q_Nd8iTZ9fySEMJmnnIkVOu6DM0MVWuyhg9ZD6wCHEjeVi6Ef4uiGMQI2rccNuHfTVs7UuIuhgzhU0C9sMSa7Gpu6DhMujY0zMoDHdsJ-nOGPajYoXg5X6KI0dQ-b775Gbw_3h-Ip2b8-Phe7feJSyoakFBkXwioOVljiSCaFUJnIpMoVEC-pyJVLvSQ8z401yklHITOsZJ7nFli6RuTku3zQRyh1F6vGxElTope49JKHXvLQp7hmye1JUoVOH8MY2_nA__CbP_AmfmqhKZtLcCF158v0C8_aeUk</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Liu, Kun</creator><creator>Chen, Xizhang</creator><creator>Zhang, Yupeng</creator><creator>Pan, Zengxi</creator><creator>Singh, R Arvind</creator><creator>Jayalakshmi, S</creator><creator>Konovalov, Sergey</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4809-8660</orcidid><orcidid>https://orcid.org/0000-0002-3290-5299</orcidid></search><sort><creationdate>20191127</creationdate><title>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</title><author>Liu, Kun ; Chen, Xizhang ; Zhang, Yupeng ; Pan, Zengxi ; Singh, R Arvind ; Jayalakshmi, S ; Konovalov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CMT</topic><topic>Cu-Al alloy</topic><topic>dual wire</topic><topic>mechanical properties</topic><topic>microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Chen, Xizhang</creatorcontrib><creatorcontrib>Zhang, Yupeng</creatorcontrib><creatorcontrib>Pan, Zengxi</creatorcontrib><creatorcontrib>Singh, R Arvind</creatorcontrib><creatorcontrib>Jayalakshmi, S</creatorcontrib><creatorcontrib>Konovalov, Sergey</creatorcontrib><collection>CrossRef</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kun</au><au>Chen, Xizhang</au><au>Zhang, Yupeng</au><au>Pan, Zengxi</au><au>Singh, R Arvind</au><au>Jayalakshmi, S</au><au>Konovalov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2019-11-27</date><risdate>2019</risdate><volume>6</volume><issue>12</issue><spage>126567</spage><pages>126567-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab583e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4809-8660</orcidid><orcidid>https://orcid.org/0000-0002-3290-5299</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2019-11, Vol.6 (12), p.126567
issn 2053-1591
2053-1591
language eng
recordid cdi_iop_journals_10_1088_2053_1591_ab583e
source IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link
subjects CMT
Cu-Al alloy
dual wire
mechanical properties
microstructure
title Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20dependence%20of%20microstructure%20and%20mechanical%20properties%20of%20Cu-Al%20alloy%20fabricated%20by%20dual%20wire%20CMT&rft.jtitle=Materials%20research%20express&rft.au=Liu,%20Kun&rft.date=2019-11-27&rft.volume=6&rft.issue=12&rft.spage=126567&rft.pages=126567-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab583e&rft_dat=%3Ciop_cross%3Emrxab583e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true