Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT
To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER40...
Gespeichert in:
Veröffentlicht in: | Materials research express 2019-11, Vol.6 (12), p.126567 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 126567 |
container_title | Materials research express |
container_volume | 6 |
creator | Liu, Kun Chen, Xizhang Zhang, Yupeng Pan, Zengxi Singh, R Arvind Jayalakshmi, S Konovalov, Sergey |
description | To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route. |
doi_str_mv | 10.1088/2053-1591/ab583e |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2053_1591_ab583e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mrxab583e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</originalsourceid><addsrcrecordid>eNp9kMtLxDAQxoMouKx795ibF-smafPocSm-YMXLeg55TLFL25S0Rfvf27IiHkQYmGH4fR8zH0LXlNxRotSWEZ4mlOd0ayxXKZyh1c_q_Nd8iTZ9fySEMJmnnIkVOu6DM0MVWuyhg9ZD6wCHEjeVi6Ef4uiGMQI2rccNuHfTVs7UuIuhgzhU0C9sMSa7Gpu6DhMujY0zMoDHdsJ-nOGPajYoXg5X6KI0dQ-b775Gbw_3h-Ip2b8-Phe7feJSyoakFBkXwioOVljiSCaFUJnIpMoVEC-pyJVLvSQ8z401yklHITOsZJ7nFli6RuTku3zQRyh1F6vGxElTope49JKHXvLQp7hmye1JUoVOH8MY2_nA__CbP_AmfmqhKZtLcCF158v0C8_aeUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Kun ; Chen, Xizhang ; Zhang, Yupeng ; Pan, Zengxi ; Singh, R Arvind ; Jayalakshmi, S ; Konovalov, Sergey</creator><creatorcontrib>Liu, Kun ; Chen, Xizhang ; Zhang, Yupeng ; Pan, Zengxi ; Singh, R Arvind ; Jayalakshmi, S ; Konovalov, Sergey</creatorcontrib><description>To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab583e</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>CMT ; Cu-Al alloy ; dual wire ; mechanical properties ; microstructure</subject><ispartof>Materials research express, 2019-11, Vol.6 (12), p.126567</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</citedby><cites>FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</cites><orcidid>0000-0003-4809-8660 ; 0000-0002-3290-5299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab583e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,53815,53821,53868</link.rule.ids></links><search><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Chen, Xizhang</creatorcontrib><creatorcontrib>Zhang, Yupeng</creatorcontrib><creatorcontrib>Pan, Zengxi</creatorcontrib><creatorcontrib>Singh, R Arvind</creatorcontrib><creatorcontrib>Jayalakshmi, S</creatorcontrib><creatorcontrib>Konovalov, Sergey</creatorcontrib><title>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.</description><subject>CMT</subject><subject>Cu-Al alloy</subject><subject>dual wire</subject><subject>mechanical properties</subject><subject>microstructure</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQxoMouKx795ibF-smafPocSm-YMXLeg55TLFL25S0Rfvf27IiHkQYmGH4fR8zH0LXlNxRotSWEZ4mlOd0ayxXKZyh1c_q_Nd8iTZ9fySEMJmnnIkVOu6DM0MVWuyhg9ZD6wCHEjeVi6Ef4uiGMQI2rccNuHfTVs7UuIuhgzhU0C9sMSa7Gpu6DhMujY0zMoDHdsJ-nOGPajYoXg5X6KI0dQ-b775Gbw_3h-Ip2b8-Phe7feJSyoakFBkXwioOVljiSCaFUJnIpMoVEC-pyJVLvSQ8z401yklHITOsZJ7nFli6RuTku3zQRyh1F6vGxElTope49JKHXvLQp7hmye1JUoVOH8MY2_nA__CbP_AmfmqhKZtLcCF158v0C8_aeUk</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Liu, Kun</creator><creator>Chen, Xizhang</creator><creator>Zhang, Yupeng</creator><creator>Pan, Zengxi</creator><creator>Singh, R Arvind</creator><creator>Jayalakshmi, S</creator><creator>Konovalov, Sergey</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4809-8660</orcidid><orcidid>https://orcid.org/0000-0002-3290-5299</orcidid></search><sort><creationdate>20191127</creationdate><title>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</title><author>Liu, Kun ; Chen, Xizhang ; Zhang, Yupeng ; Pan, Zengxi ; Singh, R Arvind ; Jayalakshmi, S ; Konovalov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-f64566b85eb6b0c0476684647898e0d71698c3d70599aba8c7c1e4a2f2d59be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CMT</topic><topic>Cu-Al alloy</topic><topic>dual wire</topic><topic>mechanical properties</topic><topic>microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Chen, Xizhang</creatorcontrib><creatorcontrib>Zhang, Yupeng</creatorcontrib><creatorcontrib>Pan, Zengxi</creatorcontrib><creatorcontrib>Singh, R Arvind</creatorcontrib><creatorcontrib>Jayalakshmi, S</creatorcontrib><creatorcontrib>Konovalov, Sergey</creatorcontrib><collection>CrossRef</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kun</au><au>Chen, Xizhang</au><au>Zhang, Yupeng</au><au>Pan, Zengxi</au><au>Singh, R Arvind</au><au>Jayalakshmi, S</au><au>Konovalov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2019-11-27</date><risdate>2019</risdate><volume>6</volume><issue>12</issue><spage>126567</spage><pages>126567-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>To investigate the microstructure and mechanical properties at different deposition locations, an innovative dual wire Cold Metal Transfer (CMT) process was built to fabricate copper-aluminum alloy material with enhanced performances. Two commercial binary wires namely ERCuSi28L copper wire and ER4043 aluminum wire were fed into the common molten pool to build copper rich Cu-Al alloy samples by adjusting the wire feed speed of the two separate wire feeders. The deposited wall part showed good integrity and excellent mechanical properties, with only 15 MPa difference in ultimate tensile strength, 10 MPa difference in yield strength (YS) and 2% difference in elongation between the mechanical properties along the vertical directions. It was observed that the yield strength was higher than that of the commercially available T2-Cu. The average microhardness of the lower region, upper-middle region and upper region were 217.1 Hv, 226.8 Hv and 221.4 Hv, respectively. Four phases were detected in the deposited sample at different location, i.e. deposited height regions. From the results it is clearly seen that the dual wire CMT process has excellent potential to produce Cu-Al components with relatively low cost and reduced lead time, thus offering a new robust and viable manufacturing route.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab583e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4809-8660</orcidid><orcidid>https://orcid.org/0000-0002-3290-5299</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2019-11, Vol.6 (12), p.126567 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_iop_journals_10_1088_2053_1591_ab583e |
source | IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | CMT Cu-Al alloy dual wire mechanical properties microstructure |
title | Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20dependence%20of%20microstructure%20and%20mechanical%20properties%20of%20Cu-Al%20alloy%20fabricated%20by%20dual%20wire%20CMT&rft.jtitle=Materials%20research%20express&rft.au=Liu,%20Kun&rft.date=2019-11-27&rft.volume=6&rft.issue=12&rft.spage=126567&rft.pages=126567-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab583e&rft_dat=%3Ciop_cross%3Emrxab583e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |