Ferromagnet-antiferromagnet transition in layered perovskites of Sr3YCo4O10.5 type

Sr1−xYxCoO2.65 (x = 0.2) with layered perovskite structure was studied by neutron diffraction, synchrotron x-ray and magnetometry methods. It is shown that in the 90-375 K temperature range the crystal structure can be described by the monoclinic space group A2/m with the superstructure 4 2ap × 2 2a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2019-02, Vol.6 (2)
Hauptverfasser: Troyanchuk, I O, Bushinsky, M V, Tereshko, N V, Lanovsky, R A, Sikolenko, V V, Ritter, Orlov, Yu S, Ovchinnikov, S G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Materials research express
container_volume 6
creator Troyanchuk, I O
Bushinsky, M V
Tereshko, N V
Lanovsky, R A
Sikolenko, V V
Ritter
Orlov, Yu S
Ovchinnikov, S G
description Sr1−xYxCoO2.65 (x = 0.2) with layered perovskite structure was studied by neutron diffraction, synchrotron x-ray and magnetometry methods. It is shown that in the 90-375 K temperature range the crystal structure can be described by the monoclinic space group A2/m with the superstructure 4 2ap × 2 2ap × 4ap (with ap corresponding to the unit cell parameter of the primitive cell) while basic diffraction peaks are well indexed in the space group I4/mmm (2ap × 2ap × 4ap) shows an almost standard magnetization. The basic magnetic structure is G-type antiferromagnetic with average magnetic moments of 2.7 B/Co and 1.7 B/Co in anion-deficient CoO4+γ and stoichiometric CoO6 layers, respectively. A ferromagnetic component of about 0.27 B/Co is determined from the magnetization measurements at 8 K. Sr0.8Y0.2CoO2.65 shows an almost standard magnetization versus temperature dependence whereas Sr0.75Y0.25CoO2.65 exhibits an antiferromagnet-ferromagnet transition accompanied by a structural transformation. There is practically no spontaneous magnetization in x = 0.3. The type of the magnetic structure and the high value of TN suggest that the Co3+ ions are in both structural layers predominantly in the low-spin (LS)/high-spin (HS) state mixture. It is proposed that the ferromagnetic component is due to the orbital ordering occurring at TN in the CoO5 pyramids and the concomitant appearance of ferromagnetic coupling between the Co3+(HS) ions located in these CoO5 pyramids in the anion-deficient CoO4+γ layer.
doi_str_mv 10.1088/2053-1591/aaef21
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_2053_1591_aaef21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mrxaaef21</sourcerecordid><originalsourceid>FETCH-LOGICAL-i265t-9455dad6694fcb50c6234e7fc85b8903eaae34211543bceebba637cbee23fca93</originalsourceid><addsrcrecordid>eNptUE1LwzAYDoLgmLt7zMmTdflue5TiVBgM_Dh4Cmn7RjK3pCRR3L-3ZaIXTy_Py8PzhdAFJdeUVNWSEckLKmu6NAYsoydo9vs6Q4uUtoQQVtZcMjVDjyuIMezNm4dcGJ-d_cM4R-OTyy547DzemQNE6PEAMXymd5ch4WDxU-SvTRCb0V_ifBjgHJ1as0uw-Llz9LK6fW7ui_Xm7qG5WReOKZmLWkjZm16pWtiulaRTjAsobVfJtqoJhzE-F4xSKXjbAbStUbzsWgDGbWdqPkdXR10XBr0NH9GPbpoSPc2gp8566qyPM4z0y3_o-_illWaaMEWJ1ENv-Tct-2D5</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ferromagnet-antiferromagnet transition in layered perovskites of Sr3YCo4O10.5 type</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Troyanchuk, I O ; Bushinsky, M V ; Tereshko, N V ; Lanovsky, R A ; Sikolenko, V V ; Ritter ; Orlov, Yu S ; Ovchinnikov, S G</creator><creatorcontrib>Troyanchuk, I O ; Bushinsky, M V ; Tereshko, N V ; Lanovsky, R A ; Sikolenko, V V ; Ritter ; Orlov, Yu S ; Ovchinnikov, S G</creatorcontrib><description>Sr1−xYxCoO2.65 (x = 0.2) with layered perovskite structure was studied by neutron diffraction, synchrotron x-ray and magnetometry methods. It is shown that in the 90-375 K temperature range the crystal structure can be described by the monoclinic space group A2/m with the superstructure 4 2ap × 2 2ap × 4ap (with ap corresponding to the unit cell parameter of the primitive cell) while basic diffraction peaks are well indexed in the space group I4/mmm (2ap × 2ap × 4ap) shows an almost standard magnetization. The basic magnetic structure is G-type antiferromagnetic with average magnetic moments of 2.7 B/Co and 1.7 B/Co in anion-deficient CoO4+γ and stoichiometric CoO6 layers, respectively. A ferromagnetic component of about 0.27 B/Co is determined from the magnetization measurements at 8 K. Sr0.8Y0.2CoO2.65 shows an almost standard magnetization versus temperature dependence whereas Sr0.75Y0.25CoO2.65 exhibits an antiferromagnet-ferromagnet transition accompanied by a structural transformation. There is practically no spontaneous magnetization in x = 0.3. The type of the magnetic structure and the high value of TN suggest that the Co3+ ions are in both structural layers predominantly in the low-spin (LS)/high-spin (HS) state mixture. It is proposed that the ferromagnetic component is due to the orbital ordering occurring at TN in the CoO5 pyramids and the concomitant appearance of ferromagnetic coupling between the Co3+(HS) ions located in these CoO5 pyramids in the anion-deficient CoO4+γ layer.</description><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/aaef21</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>neutron diffraction ; orbital ordering ; spin state</subject><ispartof>Materials research express, 2019-02, Vol.6 (2)</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1582-9981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/aaef21/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,53840,53846,53893</link.rule.ids></links><search><creatorcontrib>Troyanchuk, I O</creatorcontrib><creatorcontrib>Bushinsky, M V</creatorcontrib><creatorcontrib>Tereshko, N V</creatorcontrib><creatorcontrib>Lanovsky, R A</creatorcontrib><creatorcontrib>Sikolenko, V V</creatorcontrib><creatorcontrib>Ritter</creatorcontrib><creatorcontrib>Orlov, Yu S</creatorcontrib><creatorcontrib>Ovchinnikov, S G</creatorcontrib><title>Ferromagnet-antiferromagnet transition in layered perovskites of Sr3YCo4O10.5 type</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Sr1−xYxCoO2.65 (x = 0.2) with layered perovskite structure was studied by neutron diffraction, synchrotron x-ray and magnetometry methods. It is shown that in the 90-375 K temperature range the crystal structure can be described by the monoclinic space group A2/m with the superstructure 4 2ap × 2 2ap × 4ap (with ap corresponding to the unit cell parameter of the primitive cell) while basic diffraction peaks are well indexed in the space group I4/mmm (2ap × 2ap × 4ap) shows an almost standard magnetization. The basic magnetic structure is G-type antiferromagnetic with average magnetic moments of 2.7 B/Co and 1.7 B/Co in anion-deficient CoO4+γ and stoichiometric CoO6 layers, respectively. A ferromagnetic component of about 0.27 B/Co is determined from the magnetization measurements at 8 K. Sr0.8Y0.2CoO2.65 shows an almost standard magnetization versus temperature dependence whereas Sr0.75Y0.25CoO2.65 exhibits an antiferromagnet-ferromagnet transition accompanied by a structural transformation. There is practically no spontaneous magnetization in x = 0.3. The type of the magnetic structure and the high value of TN suggest that the Co3+ ions are in both structural layers predominantly in the low-spin (LS)/high-spin (HS) state mixture. It is proposed that the ferromagnetic component is due to the orbital ordering occurring at TN in the CoO5 pyramids and the concomitant appearance of ferromagnetic coupling between the Co3+(HS) ions located in these CoO5 pyramids in the anion-deficient CoO4+γ layer.</description><subject>neutron diffraction</subject><subject>orbital ordering</subject><subject>spin state</subject><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptUE1LwzAYDoLgmLt7zMmTdflue5TiVBgM_Dh4Cmn7RjK3pCRR3L-3ZaIXTy_Py8PzhdAFJdeUVNWSEckLKmu6NAYsoydo9vs6Q4uUtoQQVtZcMjVDjyuIMezNm4dcGJ-d_cM4R-OTyy547DzemQNE6PEAMXymd5ch4WDxU-SvTRCb0V_ifBjgHJ1as0uw-Llz9LK6fW7ui_Xm7qG5WReOKZmLWkjZm16pWtiulaRTjAsobVfJtqoJhzE-F4xSKXjbAbStUbzsWgDGbWdqPkdXR10XBr0NH9GPbpoSPc2gp8566qyPM4z0y3_o-_illWaaMEWJ1ENv-Tct-2D5</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Troyanchuk, I O</creator><creator>Bushinsky, M V</creator><creator>Tereshko, N V</creator><creator>Lanovsky, R A</creator><creator>Sikolenko, V V</creator><creator>Ritter</creator><creator>Orlov, Yu S</creator><creator>Ovchinnikov, S G</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0003-1582-9981</orcidid></search><sort><creationdate>20190201</creationdate><title>Ferromagnet-antiferromagnet transition in layered perovskites of Sr3YCo4O10.5 type</title><author>Troyanchuk, I O ; Bushinsky, M V ; Tereshko, N V ; Lanovsky, R A ; Sikolenko, V V ; Ritter ; Orlov, Yu S ; Ovchinnikov, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i265t-9455dad6694fcb50c6234e7fc85b8903eaae34211543bceebba637cbee23fca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>neutron diffraction</topic><topic>orbital ordering</topic><topic>spin state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troyanchuk, I O</creatorcontrib><creatorcontrib>Bushinsky, M V</creatorcontrib><creatorcontrib>Tereshko, N V</creatorcontrib><creatorcontrib>Lanovsky, R A</creatorcontrib><creatorcontrib>Sikolenko, V V</creatorcontrib><creatorcontrib>Ritter</creatorcontrib><creatorcontrib>Orlov, Yu S</creatorcontrib><creatorcontrib>Ovchinnikov, S G</creatorcontrib><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troyanchuk, I O</au><au>Bushinsky, M V</au><au>Tereshko, N V</au><au>Lanovsky, R A</au><au>Sikolenko, V V</au><au>Ritter</au><au>Orlov, Yu S</au><au>Ovchinnikov, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnet-antiferromagnet transition in layered perovskites of Sr3YCo4O10.5 type</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>6</volume><issue>2</issue><eissn>2053-1591</eissn><abstract>Sr1−xYxCoO2.65 (x = 0.2) with layered perovskite structure was studied by neutron diffraction, synchrotron x-ray and magnetometry methods. It is shown that in the 90-375 K temperature range the crystal structure can be described by the monoclinic space group A2/m with the superstructure 4 2ap × 2 2ap × 4ap (with ap corresponding to the unit cell parameter of the primitive cell) while basic diffraction peaks are well indexed in the space group I4/mmm (2ap × 2ap × 4ap) shows an almost standard magnetization. The basic magnetic structure is G-type antiferromagnetic with average magnetic moments of 2.7 B/Co and 1.7 B/Co in anion-deficient CoO4+γ and stoichiometric CoO6 layers, respectively. A ferromagnetic component of about 0.27 B/Co is determined from the magnetization measurements at 8 K. Sr0.8Y0.2CoO2.65 shows an almost standard magnetization versus temperature dependence whereas Sr0.75Y0.25CoO2.65 exhibits an antiferromagnet-ferromagnet transition accompanied by a structural transformation. There is practically no spontaneous magnetization in x = 0.3. The type of the magnetic structure and the high value of TN suggest that the Co3+ ions are in both structural layers predominantly in the low-spin (LS)/high-spin (HS) state mixture. It is proposed that the ferromagnetic component is due to the orbital ordering occurring at TN in the CoO5 pyramids and the concomitant appearance of ferromagnetic coupling between the Co3+(HS) ions located in these CoO5 pyramids in the anion-deficient CoO4+γ layer.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1591/aaef21</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1582-9981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2053-1591
ispartof Materials research express, 2019-02, Vol.6 (2)
issn 2053-1591
language eng
recordid cdi_iop_journals_10_1088_2053_1591_aaef21
source IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link
subjects neutron diffraction
orbital ordering
spin state
title Ferromagnet-antiferromagnet transition in layered perovskites of Sr3YCo4O10.5 type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnet-antiferromagnet%20transition%20in%20layered%20perovskites%20of%20Sr3YCo4O10.5%20type&rft.jtitle=Materials%20research%20express&rft.au=Troyanchuk,%20I%20O&rft.date=2019-02-01&rft.volume=6&rft.issue=2&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/aaef21&rft_dat=%3Ciop%3Emrxaaef21%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true