Influence of Nb+5 doping in Mn-Zn nanoferrites

Structure and morphology by x-ray diffraction and scanning electron microscopy in Mn0.5−x/2Zn0.5−x/2NbxFe2O4 nano-ferrites, for x, i.e. Nb+5 ranging from 0-0.3 infer cubic and hematite phase structures. Dopant cation complementarily occupy tetrahedral and octahedral sites. Lower x initiates grain fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2017-11, Vol.4 (11), p.116106
Hauptverfasser: Sridhar, Ch S L N, Lakshmi, Ch S, Laxmi, K S Maha, Manorama, Sunkara V, Govindraj, G, Bangarraju, S, Potukuchi, D M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 116106
container_title Materials research express
container_volume 4
creator Sridhar, Ch S L N
Lakshmi, Ch S
Laxmi, K S Maha
Manorama, Sunkara V
Govindraj, G
Bangarraju, S
Potukuchi, D M
description Structure and morphology by x-ray diffraction and scanning electron microscopy in Mn0.5−x/2Zn0.5−x/2NbxFe2O4 nano-ferrites, for x, i.e. Nb+5 ranging from 0-0.3 infer cubic and hematite phase structures. Dopant cation complementarily occupy tetrahedral and octahedral sites. Lower x initiates grain formation and further promotes its growth. X-rays and Fourier transform infra-red spectroscopy confirm nanophased structure. Dielectric constant ( r) and loss decreases, while ac resistivity (ρ) increases with x. Lower loss (Tanδ ~ 10−3 to 10−4) and high resistivity (~108 to 109 cm) at 1 MHz ac field indicate preferred utility in high-frequency applications. The influence of grain size is identified by correlative study. Magnetization decreases with doping due to spin canting triggered by diamagnetic dopant. Enhanced field response is attributed to the synthetic route, nanoform, grain size D, spin canting and sintering temperatures. Comparative analysis emphasized the impact of D. Reduced saturation magnetization with x is explained by Yaffet-Kittel angles. Enhanced resistivity by 1-2 orders and less loss vouch for high-frequency applications of Nb+5-doped Mn-Zn nanoferrites as the materials of choice.
doi_str_mv 10.1088/2053-1591/aa9546
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2053_1591_aa9546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mrxaa9546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-d7d5b815c0a570feb857aef6b58d3804fe565fb920de60d79d356f242da6c37d3</originalsourceid><addsrcrecordid>eNp9j0FLAzEQRoMoWGrvHvfmQbedJDtJ9ihFa6HqRS9eQnaTyJY2WbIt6L93lxXxIMLADMP3hnmEXFKYU1BqwQB5TrGkC2NKLMQJmfysTn_N52TWdVsAYLLkyMSEzNfB744u1C6LPnuqrjGzsW3Ce9aE7DHkbyELJkTvUmoOrrsgZ97sOjf77lPyen_3snzIN8-r9fJ2k9esYIfcSouVoliDQQneVQqlcV5UqCxXUHiHAn1VMrBOgJWl5Sh8j1ojai4tnxIY79Ypdl1yXrep2Zv0qSnoQVkPTnpw0qNyj9yMSBNbvY3HFPoH_4tf_RHfpw9daEr7EhSEbq3nX0tuYpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Nb+5 doping in Mn-Zn nanoferrites</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sridhar, Ch S L N ; Lakshmi, Ch S ; Laxmi, K S Maha ; Manorama, Sunkara V ; Govindraj, G ; Bangarraju, S ; Potukuchi, D M</creator><creatorcontrib>Sridhar, Ch S L N ; Lakshmi, Ch S ; Laxmi, K S Maha ; Manorama, Sunkara V ; Govindraj, G ; Bangarraju, S ; Potukuchi, D M</creatorcontrib><description>Structure and morphology by x-ray diffraction and scanning electron microscopy in Mn0.5−x/2Zn0.5−x/2NbxFe2O4 nano-ferrites, for x, i.e. Nb+5 ranging from 0-0.3 infer cubic and hematite phase structures. Dopant cation complementarily occupy tetrahedral and octahedral sites. Lower x initiates grain formation and further promotes its growth. X-rays and Fourier transform infra-red spectroscopy confirm nanophased structure. Dielectric constant ( r) and loss decreases, while ac resistivity (ρ) increases with x. Lower loss (Tanδ ~ 10−3 to 10−4) and high resistivity (~108 to 109 cm) at 1 MHz ac field indicate preferred utility in high-frequency applications. The influence of grain size is identified by correlative study. Magnetization decreases with doping due to spin canting triggered by diamagnetic dopant. Enhanced field response is attributed to the synthetic route, nanoform, grain size D, spin canting and sintering temperatures. Comparative analysis emphasized the impact of D. Reduced saturation magnetization with x is explained by Yaffet-Kittel angles. Enhanced resistivity by 1-2 orders and less loss vouch for high-frequency applications of Nb+5-doped Mn-Zn nanoferrites as the materials of choice.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/aa9546</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cationic distribution ; crystallite size ; hydrothermal method ; loss and resistivity ; saturation magnetization ; spin canting</subject><ispartof>Materials research express, 2017-11, Vol.4 (11), p.116106</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-d7d5b815c0a570feb857aef6b58d3804fe565fb920de60d79d356f242da6c37d3</citedby><cites>FETCH-LOGICAL-c242t-d7d5b815c0a570feb857aef6b58d3804fe565fb920de60d79d356f242da6c37d3</cites><orcidid>0000-0003-3998-4206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/aa9546/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,38873,53845,53851,53898</link.rule.ids></links><search><creatorcontrib>Sridhar, Ch S L N</creatorcontrib><creatorcontrib>Lakshmi, Ch S</creatorcontrib><creatorcontrib>Laxmi, K S Maha</creatorcontrib><creatorcontrib>Manorama, Sunkara V</creatorcontrib><creatorcontrib>Govindraj, G</creatorcontrib><creatorcontrib>Bangarraju, S</creatorcontrib><creatorcontrib>Potukuchi, D M</creatorcontrib><title>Influence of Nb+5 doping in Mn-Zn nanoferrites</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Structure and morphology by x-ray diffraction and scanning electron microscopy in Mn0.5−x/2Zn0.5−x/2NbxFe2O4 nano-ferrites, for x, i.e. Nb+5 ranging from 0-0.3 infer cubic and hematite phase structures. Dopant cation complementarily occupy tetrahedral and octahedral sites. Lower x initiates grain formation and further promotes its growth. X-rays and Fourier transform infra-red spectroscopy confirm nanophased structure. Dielectric constant ( r) and loss decreases, while ac resistivity (ρ) increases with x. Lower loss (Tanδ ~ 10−3 to 10−4) and high resistivity (~108 to 109 cm) at 1 MHz ac field indicate preferred utility in high-frequency applications. The influence of grain size is identified by correlative study. Magnetization decreases with doping due to spin canting triggered by diamagnetic dopant. Enhanced field response is attributed to the synthetic route, nanoform, grain size D, spin canting and sintering temperatures. Comparative analysis emphasized the impact of D. Reduced saturation magnetization with x is explained by Yaffet-Kittel angles. Enhanced resistivity by 1-2 orders and less loss vouch for high-frequency applications of Nb+5-doped Mn-Zn nanoferrites as the materials of choice.</description><subject>cationic distribution</subject><subject>crystallite size</subject><subject>hydrothermal method</subject><subject>loss and resistivity</subject><subject>saturation magnetization</subject><subject>spin canting</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLAzEQRoMoWGrvHvfmQbedJDtJ9ihFa6HqRS9eQnaTyJY2WbIt6L93lxXxIMLADMP3hnmEXFKYU1BqwQB5TrGkC2NKLMQJmfysTn_N52TWdVsAYLLkyMSEzNfB744u1C6LPnuqrjGzsW3Ce9aE7DHkbyELJkTvUmoOrrsgZ97sOjf77lPyen_3snzIN8-r9fJ2k9esYIfcSouVoliDQQneVQqlcV5UqCxXUHiHAn1VMrBOgJWl5Sh8j1ojai4tnxIY79Ypdl1yXrep2Zv0qSnoQVkPTnpw0qNyj9yMSBNbvY3HFPoH_4tf_RHfpw9daEr7EhSEbq3nX0tuYpg</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Sridhar, Ch S L N</creator><creator>Lakshmi, Ch S</creator><creator>Laxmi, K S Maha</creator><creator>Manorama, Sunkara V</creator><creator>Govindraj, G</creator><creator>Bangarraju, S</creator><creator>Potukuchi, D M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3998-4206</orcidid></search><sort><creationdate>20171116</creationdate><title>Influence of Nb+5 doping in Mn-Zn nanoferrites</title><author>Sridhar, Ch S L N ; Lakshmi, Ch S ; Laxmi, K S Maha ; Manorama, Sunkara V ; Govindraj, G ; Bangarraju, S ; Potukuchi, D M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-d7d5b815c0a570feb857aef6b58d3804fe565fb920de60d79d356f242da6c37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cationic distribution</topic><topic>crystallite size</topic><topic>hydrothermal method</topic><topic>loss and resistivity</topic><topic>saturation magnetization</topic><topic>spin canting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sridhar, Ch S L N</creatorcontrib><creatorcontrib>Lakshmi, Ch S</creatorcontrib><creatorcontrib>Laxmi, K S Maha</creatorcontrib><creatorcontrib>Manorama, Sunkara V</creatorcontrib><creatorcontrib>Govindraj, G</creatorcontrib><creatorcontrib>Bangarraju, S</creatorcontrib><creatorcontrib>Potukuchi, D M</creatorcontrib><collection>CrossRef</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridhar, Ch S L N</au><au>Lakshmi, Ch S</au><au>Laxmi, K S Maha</au><au>Manorama, Sunkara V</au><au>Govindraj, G</au><au>Bangarraju, S</au><au>Potukuchi, D M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Nb+5 doping in Mn-Zn nanoferrites</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2017-11-16</date><risdate>2017</risdate><volume>4</volume><issue>11</issue><spage>116106</spage><pages>116106-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Structure and morphology by x-ray diffraction and scanning electron microscopy in Mn0.5−x/2Zn0.5−x/2NbxFe2O4 nano-ferrites, for x, i.e. Nb+5 ranging from 0-0.3 infer cubic and hematite phase structures. Dopant cation complementarily occupy tetrahedral and octahedral sites. Lower x initiates grain formation and further promotes its growth. X-rays and Fourier transform infra-red spectroscopy confirm nanophased structure. Dielectric constant ( r) and loss decreases, while ac resistivity (ρ) increases with x. Lower loss (Tanδ ~ 10−3 to 10−4) and high resistivity (~108 to 109 cm) at 1 MHz ac field indicate preferred utility in high-frequency applications. The influence of grain size is identified by correlative study. Magnetization decreases with doping due to spin canting triggered by diamagnetic dopant. Enhanced field response is attributed to the synthetic route, nanoform, grain size D, spin canting and sintering temperatures. Comparative analysis emphasized the impact of D. Reduced saturation magnetization with x is explained by Yaffet-Kittel angles. Enhanced resistivity by 1-2 orders and less loss vouch for high-frequency applications of Nb+5-doped Mn-Zn nanoferrites as the materials of choice.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1591/aa9546</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3998-4206</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2017-11, Vol.4 (11), p.116106
issn 2053-1591
2053-1591
language eng
recordid cdi_iop_journals_10_1088_2053_1591_aa9546
source IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link
subjects cationic distribution
crystallite size
hydrothermal method
loss and resistivity
saturation magnetization
spin canting
title Influence of Nb+5 doping in Mn-Zn nanoferrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Nb+5%20doping%20in%20Mn-Zn%20nanoferrites&rft.jtitle=Materials%20research%20express&rft.au=Sridhar,%20Ch%20S%20L%20N&rft.date=2017-11-16&rft.volume=4&rft.issue=11&rft.spage=116106&rft.pages=116106-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/aa9546&rft_dat=%3Ciop_cross%3Emrxaa9546%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true