Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures

Strong optoelectronic response in the binary van der Waals heterostructures of graphene and transition metal dichalcogenides (TMDCs) is an emerging route towards high-sensitivity light sensing. While the high sensitivity is an effect of photogating of graphene due to inter-layer transfer of photo-ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2020-04, Vol.7 (2)
Hauptverfasser: Ahmed, Tanweer, Roy, Kallol, Kakkar, Saloni, Pradhan, Avradip, Ghosh, Arindam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title 2d materials
container_volume 7
creator Ahmed, Tanweer
Roy, Kallol
Kakkar, Saloni
Pradhan, Avradip
Ghosh, Arindam
description Strong optoelectronic response in the binary van der Waals heterostructures of graphene and transition metal dichalcogenides (TMDCs) is an emerging route towards high-sensitivity light sensing. While the high sensitivity is an effect of photogating of graphene due to inter-layer transfer of photo-excited carriers, the impact of intrinisic defects, such as traps and mid-gap states in the chalcogen layer remain largely unexplored. Here we employ graphene/hBN (hexagonal boron nitride)/MoS2 (molybdenum disulphide) trilayer heterostructures to explore the photogating mechanism, where the hBN layer acts as interfacial barrier to tune the charge transfer timescale. We find two new features in the photoresponse: First, an unexpected positive component in photoconductance upon illumination at short times that preceeds the conventional negative photoconductance due to charge transfer, and second, a strong negative photoresponse at infrared wavelengths (up to 1720 nm) well-below the band gap of single layer MoS2. Detailed time and gate voltage-dependence of the photoconductance indicates optically-driven charging of trap states as possible origin of these observations. The responsivity of the trilayer structure in the infrared regime was found to be extremely large (> 108 A/W at 1550 nm using 20 mV source drain bias at 180 K temperature and ≈ − 30 V back gate voltage). Our experiment demonstrates that interface engineering in the optically sensitive van der Waals heterostructures may cast crucial insight onto both inter- and intra-layer charge reorganization processes in graphene/TMDC heterostructures.
doi_str_mv 10.1088/2053-1583/ab771f
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_2053_1583_ab771f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>tdmab771f</sourcerecordid><originalsourceid>FETCH-LOGICAL-i192t-7c9430df049ea68961001f2f636402183ed4fa8d247046ddb94d930990a6bb6d3</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMguKx795gfYO2kyabNURddF1Y9qHgsaTOxXUpSkqzov7dlxdMwb3jzHh8hVwxuGFRVXsCaZ2xd8Vw3ZcnsGVn8SxdkFeMBAFgpuWByQb53LmEYB_1DvaVtp8Mn0hS0ixYD1c5Q00cfzLT0jvoxeRywTcG7vqUB4-hdxPm0DXrs0GHe3T3nT_61oF_a0dn3ofUQaYdTjo8pHNt0nIyX5NxOOq7-5pK8P9y_bR6z_ct2t7ndZz1TRcrKVgkOxoJQqGWlJJvK28JKLgUUrOJohNWVKUQJQhrTKGEUB6VAy6aRhi_J9elv78f64I_BTWk1g3qGVc9k6plMfYLFfwG1OWBz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ahmed, Tanweer ; Roy, Kallol ; Kakkar, Saloni ; Pradhan, Avradip ; Ghosh, Arindam</creator><creatorcontrib>Ahmed, Tanweer ; Roy, Kallol ; Kakkar, Saloni ; Pradhan, Avradip ; Ghosh, Arindam</creatorcontrib><description>Strong optoelectronic response in the binary van der Waals heterostructures of graphene and transition metal dichalcogenides (TMDCs) is an emerging route towards high-sensitivity light sensing. While the high sensitivity is an effect of photogating of graphene due to inter-layer transfer of photo-excited carriers, the impact of intrinisic defects, such as traps and mid-gap states in the chalcogen layer remain largely unexplored. Here we employ graphene/hBN (hexagonal boron nitride)/MoS2 (molybdenum disulphide) trilayer heterostructures to explore the photogating mechanism, where the hBN layer acts as interfacial barrier to tune the charge transfer timescale. We find two new features in the photoresponse: First, an unexpected positive component in photoconductance upon illumination at short times that preceeds the conventional negative photoconductance due to charge transfer, and second, a strong negative photoresponse at infrared wavelengths (up to 1720 nm) well-below the band gap of single layer MoS2. Detailed time and gate voltage-dependence of the photoconductance indicates optically-driven charging of trap states as possible origin of these observations. The responsivity of the trilayer structure in the infrared regime was found to be extremely large (&gt; 108 A/W at 1550 nm using 20 mV source drain bias at 180 K temperature and ≈ − 30 V back gate voltage). Our experiment demonstrates that interface engineering in the optically sensitive van der Waals heterostructures may cast crucial insight onto both inter- and intra-layer charge reorganization processes in graphene/TMDC heterostructures.</description><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/ab771f</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>defects and disorders in TMDCs ; graphene ; infrared photodetection ; monolayer MoS ; phototransistor ; Van der Waals heterostructures</subject><ispartof>2d materials, 2020-04, Vol.7 (2)</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5921-8405 ; 0000-0001-8881-5682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1583/ab771f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,53819,53825,53872</link.rule.ids></links><search><creatorcontrib>Ahmed, Tanweer</creatorcontrib><creatorcontrib>Roy, Kallol</creatorcontrib><creatorcontrib>Kakkar, Saloni</creatorcontrib><creatorcontrib>Pradhan, Avradip</creatorcontrib><creatorcontrib>Ghosh, Arindam</creatorcontrib><title>Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures</title><title>2d materials</title><addtitle>TDM</addtitle><addtitle>2D Mater</addtitle><description>Strong optoelectronic response in the binary van der Waals heterostructures of graphene and transition metal dichalcogenides (TMDCs) is an emerging route towards high-sensitivity light sensing. While the high sensitivity is an effect of photogating of graphene due to inter-layer transfer of photo-excited carriers, the impact of intrinisic defects, such as traps and mid-gap states in the chalcogen layer remain largely unexplored. Here we employ graphene/hBN (hexagonal boron nitride)/MoS2 (molybdenum disulphide) trilayer heterostructures to explore the photogating mechanism, where the hBN layer acts as interfacial barrier to tune the charge transfer timescale. We find two new features in the photoresponse: First, an unexpected positive component in photoconductance upon illumination at short times that preceeds the conventional negative photoconductance due to charge transfer, and second, a strong negative photoresponse at infrared wavelengths (up to 1720 nm) well-below the band gap of single layer MoS2. Detailed time and gate voltage-dependence of the photoconductance indicates optically-driven charging of trap states as possible origin of these observations. The responsivity of the trilayer structure in the infrared regime was found to be extremely large (&gt; 108 A/W at 1550 nm using 20 mV source drain bias at 180 K temperature and ≈ − 30 V back gate voltage). Our experiment demonstrates that interface engineering in the optically sensitive van der Waals heterostructures may cast crucial insight onto both inter- and intra-layer charge reorganization processes in graphene/TMDC heterostructures.</description><subject>defects and disorders in TMDCs</subject><subject>graphene</subject><subject>infrared photodetection</subject><subject>monolayer MoS</subject><subject>phototransistor</subject><subject>Van der Waals heterostructures</subject><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFLxDAQhYMguKx795gfYO2kyabNURddF1Y9qHgsaTOxXUpSkqzov7dlxdMwb3jzHh8hVwxuGFRVXsCaZ2xd8Vw3ZcnsGVn8SxdkFeMBAFgpuWByQb53LmEYB_1DvaVtp8Mn0hS0ixYD1c5Q00cfzLT0jvoxeRywTcG7vqUB4-hdxPm0DXrs0GHe3T3nT_61oF_a0dn3ofUQaYdTjo8pHNt0nIyX5NxOOq7-5pK8P9y_bR6z_ct2t7ndZz1TRcrKVgkOxoJQqGWlJJvK28JKLgUUrOJohNWVKUQJQhrTKGEUB6VAy6aRhi_J9elv78f64I_BTWk1g3qGVc9k6plMfYLFfwG1OWBz</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ahmed, Tanweer</creator><creator>Roy, Kallol</creator><creator>Kakkar, Saloni</creator><creator>Pradhan, Avradip</creator><creator>Ghosh, Arindam</creator><general>IOP Publishing</general><scope/><orcidid>https://orcid.org/0000-0002-5921-8405</orcidid><orcidid>https://orcid.org/0000-0001-8881-5682</orcidid></search><sort><creationdate>20200401</creationdate><title>Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures</title><author>Ahmed, Tanweer ; Roy, Kallol ; Kakkar, Saloni ; Pradhan, Avradip ; Ghosh, Arindam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i192t-7c9430df049ea68961001f2f636402183ed4fa8d247046ddb94d930990a6bb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>defects and disorders in TMDCs</topic><topic>graphene</topic><topic>infrared photodetection</topic><topic>monolayer MoS</topic><topic>phototransistor</topic><topic>Van der Waals heterostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Tanweer</creatorcontrib><creatorcontrib>Roy, Kallol</creatorcontrib><creatorcontrib>Kakkar, Saloni</creatorcontrib><creatorcontrib>Pradhan, Avradip</creatorcontrib><creatorcontrib>Ghosh, Arindam</creatorcontrib><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Tanweer</au><au>Roy, Kallol</au><au>Kakkar, Saloni</au><au>Pradhan, Avradip</au><au>Ghosh, Arindam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures</atitle><jtitle>2d materials</jtitle><stitle>TDM</stitle><addtitle>2D Mater</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><eissn>2053-1583</eissn><abstract>Strong optoelectronic response in the binary van der Waals heterostructures of graphene and transition metal dichalcogenides (TMDCs) is an emerging route towards high-sensitivity light sensing. While the high sensitivity is an effect of photogating of graphene due to inter-layer transfer of photo-excited carriers, the impact of intrinisic defects, such as traps and mid-gap states in the chalcogen layer remain largely unexplored. Here we employ graphene/hBN (hexagonal boron nitride)/MoS2 (molybdenum disulphide) trilayer heterostructures to explore the photogating mechanism, where the hBN layer acts as interfacial barrier to tune the charge transfer timescale. We find two new features in the photoresponse: First, an unexpected positive component in photoconductance upon illumination at short times that preceeds the conventional negative photoconductance due to charge transfer, and second, a strong negative photoresponse at infrared wavelengths (up to 1720 nm) well-below the band gap of single layer MoS2. Detailed time and gate voltage-dependence of the photoconductance indicates optically-driven charging of trap states as possible origin of these observations. The responsivity of the trilayer structure in the infrared regime was found to be extremely large (&gt; 108 A/W at 1550 nm using 20 mV source drain bias at 180 K temperature and ≈ − 30 V back gate voltage). Our experiment demonstrates that interface engineering in the optically sensitive van der Waals heterostructures may cast crucial insight onto both inter- and intra-layer charge reorganization processes in graphene/TMDC heterostructures.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1583/ab771f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5921-8405</orcidid><orcidid>https://orcid.org/0000-0001-8881-5682</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2053-1583
ispartof 2d materials, 2020-04, Vol.7 (2)
issn 2053-1583
language eng
recordid cdi_iop_journals_10_1088_2053_1583_ab771f
source IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link
subjects defects and disorders in TMDCs
graphene
infrared photodetection
monolayer MoS
phototransistor
Van der Waals heterostructures
title Interplay of charge transfer and disorder in optoelectronic response in Graphene/hBN/MoS2 van der Waals heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20charge%20transfer%20and%20disorder%20in%20optoelectronic%20response%20in%20Graphene/hBN/MoS2%20van%20der%20Waals%20heterostructures&rft.jtitle=2d%20materials&rft.au=Ahmed,%20Tanweer&rft.date=2020-04-01&rft.volume=7&rft.issue=2&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/ab771f&rft_dat=%3Ciop%3Etdmab771f%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true