Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites
High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructur...
Gespeichert in:
Veröffentlicht in: | Surface topography metrology and properties 2020-09, Vol.8 (3), p.35012 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35012 |
container_title | Surface topography metrology and properties |
container_volume | 8 |
creator | Yang, Xiao Zhang, Hongxia Cheng, Buyun Liu, Yongquan Yan, Zhifeng Dong, Peng Wang, Wenxian |
description | High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites. |
doi_str_mv | 10.1088/2051-672X/abade4 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2051_672X_abade4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>stmpabade4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</originalsourceid><addsrcrecordid>eNp9kLtqHEEQRQchg4Ws3GFnSjTafswzFEIvkHFig7Omth-7LXqmh6qeYH9LX6gZrxAOhKMqLqduwSmK74JfC951G8lrUTat_LOBLVhXnRRnH9HpP_vX4oLohXMuVCNUJ8-K1x_BYKKMs8kzQrxif4M9oB0dEYPRsoxhm2LaBQNxCSAeKBBLnpmUYhh3JdASZGeZx2BySCOjHJBNmMzSsRArvA-7fenGjGk6MIgxHdgEmIOJjhi6MPqEZumAOA9hnId3hmb0YNzya5gShezoW_HFQyR38T7Pi9_3d79uH8vnnw9PtzfPpVFC5rLqpKjbSprG1rWAVm6l88a2oHzb2wqchKqXVSONUGLLZc-73gAY1Zi-tRzUecGPvasgQuf1hGEAPGjB9apdr1716lUftS8nV8eTkCb9kmZcZNH_8MtPcMrDpDutNFc1F1JP1qs3nV-ZVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yang, Xiao ; Zhang, Hongxia ; Cheng, Buyun ; Liu, Yongquan ; Yan, Zhifeng ; Dong, Peng ; Wang, Wenxian</creator><creatorcontrib>Yang, Xiao ; Zhang, Hongxia ; Cheng, Buyun ; Liu, Yongquan ; Yan, Zhifeng ; Dong, Peng ; Wang, Wenxian</creatorcontrib><description>High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.</description><identifier>ISSN: 2051-672X</identifier><identifier>EISSN: 2051-672X</identifier><identifier>DOI: 10.1088/2051-672X/abade4</identifier><identifier>CODEN: STMPCW</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cooling-assisted friction stir processing ; high entropy alloy ; microstructure ; tribological properties</subject><ispartof>Surface topography metrology and properties, 2020-09, Vol.8 (3), p.35012</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</citedby><cites>FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</cites><orcidid>0000-0001-9933-1245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2051-672X/abade4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Hongxia</creatorcontrib><creatorcontrib>Cheng, Buyun</creatorcontrib><creatorcontrib>Liu, Yongquan</creatorcontrib><creatorcontrib>Yan, Zhifeng</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Wang, Wenxian</creatorcontrib><title>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</title><title>Surface topography metrology and properties</title><addtitle>STMP</addtitle><addtitle>Surf. Topogr.: Metrol. Prop</addtitle><description>High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.</description><subject>cooling-assisted friction stir processing</subject><subject>high entropy alloy</subject><subject>microstructure</subject><subject>tribological properties</subject><issn>2051-672X</issn><issn>2051-672X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtqHEEQRQchg4Ws3GFnSjTafswzFEIvkHFig7Omth-7LXqmh6qeYH9LX6gZrxAOhKMqLqduwSmK74JfC951G8lrUTat_LOBLVhXnRRnH9HpP_vX4oLohXMuVCNUJ8-K1x_BYKKMs8kzQrxif4M9oB0dEYPRsoxhm2LaBQNxCSAeKBBLnpmUYhh3JdASZGeZx2BySCOjHJBNmMzSsRArvA-7fenGjGk6MIgxHdgEmIOJjhi6MPqEZumAOA9hnId3hmb0YNzya5gShezoW_HFQyR38T7Pi9_3d79uH8vnnw9PtzfPpVFC5rLqpKjbSprG1rWAVm6l88a2oHzb2wqchKqXVSONUGLLZc-73gAY1Zi-tRzUecGPvasgQuf1hGEAPGjB9apdr1716lUftS8nV8eTkCb9kmZcZNH_8MtPcMrDpDutNFc1F1JP1qs3nV-ZVg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Yang, Xiao</creator><creator>Zhang, Hongxia</creator><creator>Cheng, Buyun</creator><creator>Liu, Yongquan</creator><creator>Yan, Zhifeng</creator><creator>Dong, Peng</creator><creator>Wang, Wenxian</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9933-1245</orcidid></search><sort><creationdate>20200901</creationdate><title>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</title><author>Yang, Xiao ; Zhang, Hongxia ; Cheng, Buyun ; Liu, Yongquan ; Yan, Zhifeng ; Dong, Peng ; Wang, Wenxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cooling-assisted friction stir processing</topic><topic>high entropy alloy</topic><topic>microstructure</topic><topic>tribological properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Hongxia</creatorcontrib><creatorcontrib>Cheng, Buyun</creatorcontrib><creatorcontrib>Liu, Yongquan</creatorcontrib><creatorcontrib>Yan, Zhifeng</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Wang, Wenxian</creatorcontrib><collection>CrossRef</collection><jtitle>Surface topography metrology and properties</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiao</au><au>Zhang, Hongxia</au><au>Cheng, Buyun</au><au>Liu, Yongquan</au><au>Yan, Zhifeng</au><au>Dong, Peng</au><au>Wang, Wenxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</atitle><jtitle>Surface topography metrology and properties</jtitle><stitle>STMP</stitle><addtitle>Surf. Topogr.: Metrol. Prop</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>35012</spage><pages>35012-</pages><issn>2051-672X</issn><eissn>2051-672X</eissn><coden>STMPCW</coden><abstract>High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.</abstract><pub>IOP Publishing</pub><doi>10.1088/2051-672X/abade4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9933-1245</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-672X |
ispartof | Surface topography metrology and properties, 2020-09, Vol.8 (3), p.35012 |
issn | 2051-672X 2051-672X |
language | eng |
recordid | cdi_iop_journals_10_1088_2051_672X_abade4 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | cooling-assisted friction stir processing high entropy alloy microstructure tribological properties |
title | Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural,%20Microhardness%20and%20tribological%20analysis%20of%20cooling-assisted%20friction%20stir%20processing%20of%20high-entropy%20alloy%20particles%20reinforced%20aluminum%20alloy%20surface%20composites&rft.jtitle=Surface%20topography%20metrology%20and%20properties&rft.au=Yang,%20Xiao&rft.date=2020-09-01&rft.volume=8&rft.issue=3&rft.spage=35012&rft.pages=35012-&rft.issn=2051-672X&rft.eissn=2051-672X&rft.coden=STMPCW&rft_id=info:doi/10.1088/2051-672X/abade4&rft_dat=%3Ciop_cross%3Estmpabade4%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |