Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites

High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface topography metrology and properties 2020-09, Vol.8 (3), p.35012
Hauptverfasser: Yang, Xiao, Zhang, Hongxia, Cheng, Buyun, Liu, Yongquan, Yan, Zhifeng, Dong, Peng, Wang, Wenxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35012
container_title Surface topography metrology and properties
container_volume 8
creator Yang, Xiao
Zhang, Hongxia
Cheng, Buyun
Liu, Yongquan
Yan, Zhifeng
Dong, Peng
Wang, Wenxian
description High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.
doi_str_mv 10.1088/2051-672X/abade4
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2051_672X_abade4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>stmpabade4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</originalsourceid><addsrcrecordid>eNp9kLtqHEEQRQchg4Ws3GFnSjTafswzFEIvkHFig7Omth-7LXqmh6qeYH9LX6gZrxAOhKMqLqduwSmK74JfC951G8lrUTat_LOBLVhXnRRnH9HpP_vX4oLohXMuVCNUJ8-K1x_BYKKMs8kzQrxif4M9oB0dEYPRsoxhm2LaBQNxCSAeKBBLnpmUYhh3JdASZGeZx2BySCOjHJBNmMzSsRArvA-7fenGjGk6MIgxHdgEmIOJjhi6MPqEZumAOA9hnId3hmb0YNzya5gShezoW_HFQyR38T7Pi9_3d79uH8vnnw9PtzfPpVFC5rLqpKjbSprG1rWAVm6l88a2oHzb2wqchKqXVSONUGLLZc-73gAY1Zi-tRzUecGPvasgQuf1hGEAPGjB9apdr1716lUftS8nV8eTkCb9kmZcZNH_8MtPcMrDpDutNFc1F1JP1qs3nV-ZVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yang, Xiao ; Zhang, Hongxia ; Cheng, Buyun ; Liu, Yongquan ; Yan, Zhifeng ; Dong, Peng ; Wang, Wenxian</creator><creatorcontrib>Yang, Xiao ; Zhang, Hongxia ; Cheng, Buyun ; Liu, Yongquan ; Yan, Zhifeng ; Dong, Peng ; Wang, Wenxian</creatorcontrib><description>High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.</description><identifier>ISSN: 2051-672X</identifier><identifier>EISSN: 2051-672X</identifier><identifier>DOI: 10.1088/2051-672X/abade4</identifier><identifier>CODEN: STMPCW</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cooling-assisted friction stir processing ; high entropy alloy ; microstructure ; tribological properties</subject><ispartof>Surface topography metrology and properties, 2020-09, Vol.8 (3), p.35012</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</citedby><cites>FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</cites><orcidid>0000-0001-9933-1245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2051-672X/abade4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Hongxia</creatorcontrib><creatorcontrib>Cheng, Buyun</creatorcontrib><creatorcontrib>Liu, Yongquan</creatorcontrib><creatorcontrib>Yan, Zhifeng</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Wang, Wenxian</creatorcontrib><title>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</title><title>Surface topography metrology and properties</title><addtitle>STMP</addtitle><addtitle>Surf. Topogr.: Metrol. Prop</addtitle><description>High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.</description><subject>cooling-assisted friction stir processing</subject><subject>high entropy alloy</subject><subject>microstructure</subject><subject>tribological properties</subject><issn>2051-672X</issn><issn>2051-672X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtqHEEQRQchg4Ws3GFnSjTafswzFEIvkHFig7Omth-7LXqmh6qeYH9LX6gZrxAOhKMqLqduwSmK74JfC951G8lrUTat_LOBLVhXnRRnH9HpP_vX4oLohXMuVCNUJ8-K1x_BYKKMs8kzQrxif4M9oB0dEYPRsoxhm2LaBQNxCSAeKBBLnpmUYhh3JdASZGeZx2BySCOjHJBNmMzSsRArvA-7fenGjGk6MIgxHdgEmIOJjhi6MPqEZumAOA9hnId3hmb0YNzya5gShezoW_HFQyR38T7Pi9_3d79uH8vnnw9PtzfPpVFC5rLqpKjbSprG1rWAVm6l88a2oHzb2wqchKqXVSONUGLLZc-73gAY1Zi-tRzUecGPvasgQuf1hGEAPGjB9apdr1716lUftS8nV8eTkCb9kmZcZNH_8MtPcMrDpDutNFc1F1JP1qs3nV-ZVg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Yang, Xiao</creator><creator>Zhang, Hongxia</creator><creator>Cheng, Buyun</creator><creator>Liu, Yongquan</creator><creator>Yan, Zhifeng</creator><creator>Dong, Peng</creator><creator>Wang, Wenxian</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9933-1245</orcidid></search><sort><creationdate>20200901</creationdate><title>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</title><author>Yang, Xiao ; Zhang, Hongxia ; Cheng, Buyun ; Liu, Yongquan ; Yan, Zhifeng ; Dong, Peng ; Wang, Wenxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-48215742c6d551a72b2efcd7a3f79d4ae2a492462c131b029089caac36c97d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cooling-assisted friction stir processing</topic><topic>high entropy alloy</topic><topic>microstructure</topic><topic>tribological properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Hongxia</creatorcontrib><creatorcontrib>Cheng, Buyun</creatorcontrib><creatorcontrib>Liu, Yongquan</creatorcontrib><creatorcontrib>Yan, Zhifeng</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Wang, Wenxian</creatorcontrib><collection>CrossRef</collection><jtitle>Surface topography metrology and properties</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiao</au><au>Zhang, Hongxia</au><au>Cheng, Buyun</au><au>Liu, Yongquan</au><au>Yan, Zhifeng</au><au>Dong, Peng</au><au>Wang, Wenxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites</atitle><jtitle>Surface topography metrology and properties</jtitle><stitle>STMP</stitle><addtitle>Surf. Topogr.: Metrol. Prop</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>8</volume><issue>3</issue><spage>35012</spage><pages>35012-</pages><issn>2051-672X</issn><eissn>2051-672X</eissn><coden>STMPCW</coden><abstract>High-entropy alloy (HEA) is a promising reinforcing material for aluminium alloys. In this work, cooling-assisted friction stir processing was applied to produce aluminium alloy surface composites reinforced with HEA particles. The effects of the volume fraction of HEA particles on the microstructure, microhardness and tribological properties were studied. The fabricated composites had uniformly distributed HEA particles and showed an excellent interfacial bonding between HEA particles and the matrix. The grain size of the fabricated composites was more refined than that of the base metal, and the grain sizes of the composites with 5 vol.%, 10 vol.% and 15 vol.% HEA particles were refined from a range of 2-15 m of aluminium matrix to 1.8, 1.4 and 1.1 m, respectively. The increased volume fraction of HEA particles caused an improvement in hardness and wear resistance. The composites reinforced with 15 vol.% HEA particles showed a 65.9% increase in hardness, a 43.0% reduction in wear rate and a 57.8% reduction in wear loss compared with those of the base metal. The wear mechanism was transformed from adhesive wear in the base metal to abrasive wear in Al-15 vol.% HEA surface composites.</abstract><pub>IOP Publishing</pub><doi>10.1088/2051-672X/abade4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9933-1245</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-672X
ispartof Surface topography metrology and properties, 2020-09, Vol.8 (3), p.35012
issn 2051-672X
2051-672X
language eng
recordid cdi_iop_journals_10_1088_2051_672X_abade4
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects cooling-assisted friction stir processing
high entropy alloy
microstructure
tribological properties
title Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural,%20Microhardness%20and%20tribological%20analysis%20of%20cooling-assisted%20friction%20stir%20processing%20of%20high-entropy%20alloy%20particles%20reinforced%20aluminum%20alloy%20surface%20composites&rft.jtitle=Surface%20topography%20metrology%20and%20properties&rft.au=Yang,%20Xiao&rft.date=2020-09-01&rft.volume=8&rft.issue=3&rft.spage=35012&rft.pages=35012-&rft.issn=2051-672X&rft.eissn=2051-672X&rft.coden=STMPCW&rft_id=info:doi/10.1088/2051-672X/abade4&rft_dat=%3Ciop_cross%3Estmpabade4%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true