Field enhancement in plasmonic nanostructures

Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optics (2010) 2018-05, Vol.20 (5), p.55401
Hauptverfasser: Piltan, Shiva, Sievenpiper, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55401
container_title Journal of optics (2010)
container_volume 20
creator Piltan, Shiva
Sievenpiper, Dan
description Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.
doi_str_mv 10.1088/2040-8986/aab87e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2040_8986_aab87e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>joptaab87e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</originalsourceid><addsrcrecordid>eNp9j0FLxDAQRoMouKx799ijB-tOmqZJj7K4rrDgRc8hTSbY0qYlaQ_-e1sqexLnMsPwvmEeIfcUnihIuc8gh1SWsthrXUmBV2RzWV1fZiFvyS7GBuZiNM8Y35D0WGNrE_Rf2hvs0I9J7ZOh1bHrfW0Sr30fxzCZcQoY78iN023E3W_fks_jy8fhlJ7fX98Oz-fUMMrGtNRYCgEiLxwFwa0UzGruOBTCZoglMG4ZrSrk0hqsjCgwEwW3UDpwQlRsS2C9a0IfY0CnhlB3OnwrCmoxVouSWvTUajxHHtdI3Q-q6afg5wf_wx_-wJt-GGdWcQWc50DVYB37AWbuZSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Field enhancement in plasmonic nanostructures</title><source>Institute of Physics Journals</source><creator>Piltan, Shiva ; Sievenpiper, Dan</creator><creatorcontrib>Piltan, Shiva ; Sievenpiper, Dan</creatorcontrib><description>Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.</description><identifier>ISSN: 2040-8978</identifier><identifier>EISSN: 2040-8986</identifier><identifier>DOI: 10.1088/2040-8986/aab87e</identifier><identifier>CODEN: JOOPCA</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>light-matter interaction ; plasmonics ; surface plasmons</subject><ispartof>Journal of optics (2010), 2018-05, Vol.20 (5), p.55401</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</citedby><cites>FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</cites><orcidid>0000-0002-4864-2251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2040-8986/aab87e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Piltan, Shiva</creatorcontrib><creatorcontrib>Sievenpiper, Dan</creatorcontrib><title>Field enhancement in plasmonic nanostructures</title><title>Journal of optics (2010)</title><addtitle>JOPT</addtitle><addtitle>J. Opt</addtitle><description>Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.</description><subject>light-matter interaction</subject><subject>plasmonics</subject><subject>surface plasmons</subject><issn>2040-8978</issn><issn>2040-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQRoMouKx799ijB-tOmqZJj7K4rrDgRc8hTSbY0qYlaQ_-e1sqexLnMsPwvmEeIfcUnihIuc8gh1SWsthrXUmBV2RzWV1fZiFvyS7GBuZiNM8Y35D0WGNrE_Rf2hvs0I9J7ZOh1bHrfW0Sr30fxzCZcQoY78iN023E3W_fks_jy8fhlJ7fX98Oz-fUMMrGtNRYCgEiLxwFwa0UzGruOBTCZoglMG4ZrSrk0hqsjCgwEwW3UDpwQlRsS2C9a0IfY0CnhlB3OnwrCmoxVouSWvTUajxHHtdI3Q-q6afg5wf_wx_-wJt-GGdWcQWc50DVYB37AWbuZSw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Piltan, Shiva</creator><creator>Sievenpiper, Dan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4864-2251</orcidid></search><sort><creationdate>20180501</creationdate><title>Field enhancement in plasmonic nanostructures</title><author>Piltan, Shiva ; Sievenpiper, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>light-matter interaction</topic><topic>plasmonics</topic><topic>surface plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piltan, Shiva</creatorcontrib><creatorcontrib>Sievenpiper, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of optics (2010)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piltan, Shiva</au><au>Sievenpiper, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field enhancement in plasmonic nanostructures</atitle><jtitle>Journal of optics (2010)</jtitle><stitle>JOPT</stitle><addtitle>J. Opt</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>20</volume><issue>5</issue><spage>55401</spage><pages>55401-</pages><issn>2040-8978</issn><eissn>2040-8986</eissn><coden>JOOPCA</coden><abstract>Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.</abstract><pub>IOP Publishing</pub><doi>10.1088/2040-8986/aab87e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4864-2251</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-8978
ispartof Journal of optics (2010), 2018-05, Vol.20 (5), p.55401
issn 2040-8978
2040-8986
language eng
recordid cdi_iop_journals_10_1088_2040_8986_aab87e
source Institute of Physics Journals
subjects light-matter interaction
plasmonics
surface plasmons
title Field enhancement in plasmonic nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20enhancement%20in%20plasmonic%20nanostructures&rft.jtitle=Journal%20of%20optics%20(2010)&rft.au=Piltan,%20Shiva&rft.date=2018-05-01&rft.volume=20&rft.issue=5&rft.spage=55401&rft.pages=55401-&rft.issn=2040-8978&rft.eissn=2040-8986&rft.coden=JOOPCA&rft_id=info:doi/10.1088/2040-8986/aab87e&rft_dat=%3Ciop_cross%3Ejoptaab87e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true