Field enhancement in plasmonic nanostructures
Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, an...
Gespeichert in:
Veröffentlicht in: | Journal of optics (2010) 2018-05, Vol.20 (5), p.55401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55401 |
container_title | Journal of optics (2010) |
container_volume | 20 |
creator | Piltan, Shiva Sievenpiper, Dan |
description | Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices. |
doi_str_mv | 10.1088/2040-8986/aab87e |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_2040_8986_aab87e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>joptaab87e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</originalsourceid><addsrcrecordid>eNp9j0FLxDAQRoMouKx799ijB-tOmqZJj7K4rrDgRc8hTSbY0qYlaQ_-e1sqexLnMsPwvmEeIfcUnihIuc8gh1SWsthrXUmBV2RzWV1fZiFvyS7GBuZiNM8Y35D0WGNrE_Rf2hvs0I9J7ZOh1bHrfW0Sr30fxzCZcQoY78iN023E3W_fks_jy8fhlJ7fX98Oz-fUMMrGtNRYCgEiLxwFwa0UzGruOBTCZoglMG4ZrSrk0hqsjCgwEwW3UDpwQlRsS2C9a0IfY0CnhlB3OnwrCmoxVouSWvTUajxHHtdI3Q-q6afg5wf_wx_-wJt-GGdWcQWc50DVYB37AWbuZSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Field enhancement in plasmonic nanostructures</title><source>Institute of Physics Journals</source><creator>Piltan, Shiva ; Sievenpiper, Dan</creator><creatorcontrib>Piltan, Shiva ; Sievenpiper, Dan</creatorcontrib><description>Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.</description><identifier>ISSN: 2040-8978</identifier><identifier>EISSN: 2040-8986</identifier><identifier>DOI: 10.1088/2040-8986/aab87e</identifier><identifier>CODEN: JOOPCA</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>light-matter interaction ; plasmonics ; surface plasmons</subject><ispartof>Journal of optics (2010), 2018-05, Vol.20 (5), p.55401</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</citedby><cites>FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</cites><orcidid>0000-0002-4864-2251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2040-8986/aab87e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Piltan, Shiva</creatorcontrib><creatorcontrib>Sievenpiper, Dan</creatorcontrib><title>Field enhancement in plasmonic nanostructures</title><title>Journal of optics (2010)</title><addtitle>JOPT</addtitle><addtitle>J. Opt</addtitle><description>Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.</description><subject>light-matter interaction</subject><subject>plasmonics</subject><subject>surface plasmons</subject><issn>2040-8978</issn><issn>2040-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQRoMouKx799ijB-tOmqZJj7K4rrDgRc8hTSbY0qYlaQ_-e1sqexLnMsPwvmEeIfcUnihIuc8gh1SWsthrXUmBV2RzWV1fZiFvyS7GBuZiNM8Y35D0WGNrE_Rf2hvs0I9J7ZOh1bHrfW0Sr30fxzCZcQoY78iN023E3W_fks_jy8fhlJ7fX98Oz-fUMMrGtNRYCgEiLxwFwa0UzGruOBTCZoglMG4ZrSrk0hqsjCgwEwW3UDpwQlRsS2C9a0IfY0CnhlB3OnwrCmoxVouSWvTUajxHHtdI3Q-q6afg5wf_wx_-wJt-GGdWcQWc50DVYB37AWbuZSw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Piltan, Shiva</creator><creator>Sievenpiper, Dan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4864-2251</orcidid></search><sort><creationdate>20180501</creationdate><title>Field enhancement in plasmonic nanostructures</title><author>Piltan, Shiva ; Sievenpiper, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-9ae9770746f1075d873da5f5067d2ee9035d31bbe58dcebc76e2765d09f0f77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>light-matter interaction</topic><topic>plasmonics</topic><topic>surface plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piltan, Shiva</creatorcontrib><creatorcontrib>Sievenpiper, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of optics (2010)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piltan, Shiva</au><au>Sievenpiper, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field enhancement in plasmonic nanostructures</atitle><jtitle>Journal of optics (2010)</jtitle><stitle>JOPT</stitle><addtitle>J. Opt</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>20</volume><issue>5</issue><spage>55401</spage><pages>55401-</pages><issn>2040-8978</issn><eissn>2040-8986</eissn><coden>JOOPCA</coden><abstract>Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of W c m − 2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.</abstract><pub>IOP Publishing</pub><doi>10.1088/2040-8986/aab87e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4864-2251</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-8978 |
ispartof | Journal of optics (2010), 2018-05, Vol.20 (5), p.55401 |
issn | 2040-8978 2040-8986 |
language | eng |
recordid | cdi_iop_journals_10_1088_2040_8986_aab87e |
source | Institute of Physics Journals |
subjects | light-matter interaction plasmonics surface plasmons |
title | Field enhancement in plasmonic nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20enhancement%20in%20plasmonic%20nanostructures&rft.jtitle=Journal%20of%20optics%20(2010)&rft.au=Piltan,%20Shiva&rft.date=2018-05-01&rft.volume=20&rft.issue=5&rft.spage=55401&rft.pages=55401-&rft.issn=2040-8978&rft.eissn=2040-8986&rft.coden=JOOPCA&rft_id=info:doi/10.1088/2040-8986/aab87e&rft_dat=%3Ciop_cross%3Ejoptaab87e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |