Lattice Boltzmann simulation of breaking waves

Water wave breaking at the ocean’s surface is a turbulent phenomenon and encompasses a wide range of physical processes such as generation of bubbles/drops with different spatio-temporal scales. In the present study, breaking of periodic waves in deep water regime has been simulated using phase-fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics research 2024-06, Vol.56 (3), p.35503
Hauptverfasser: Dinesh Kumar, E, Sannasiraj, S A, Sundar, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35503
container_title Fluid dynamics research
container_volume 56
creator Dinesh Kumar, E
Sannasiraj, S A
Sundar, V
description Water wave breaking at the ocean’s surface is a turbulent phenomenon and encompasses a wide range of physical processes such as generation of bubbles/drops with different spatio-temporal scales. In the present study, breaking of periodic waves in deep water regime has been simulated using phase-field lattice Boltzmann method (LBM). Compared to direct Navier–Stokes equation based numerical models, the present LB model is Poisson-free and explicit in time integration. Both the flow field and interface are solved using LBM with two sets of distribution functions. The normalized pressure-velocity formulation is used for the flow field, whereas the conservative Allen–Cahn equation is used to capture the interface. An impulsively started wave approach with Stokes third order wave profile has been used to initiate the breaking process. Through systematic variation of Weber number and initial steepness, the effect of surface tension on the kinematic, geometric, and energy dissipation characteristics has been studied for three breaker types, viz., spilling, weak plunging, and plunging breakers. The results are in good agreement with the past experimental observations and direct numerical simulation. In particular, the obtained breaking strength for different Weber numbers agrees well with the semi-empirical relation used in a wind-wave forecasting models.
doi_str_mv 10.1088/1873-7005/ad481b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1873_7005_ad481b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>fdrad481b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e0dcb4892db423f0ba78fefef9a0382493996fcd07fbf715de67499b9b6e792f3</originalsourceid><addsrcrecordid>eNp1j0FLxDAQhYMoWFfvHvsD7O4kaZvkqIuuQsGLnkPSJpK1bZYkq-ivt6XiTebwYN57w3wIXWNYY-B8gzmjBQOoNqorOdYnKPtbnaIMcC2KSnB6ji5i3AMAm9wMrRuVkmtNfuf79D2occyjG469Ss6Pube5Dka9u_Et_1QfJl6iM6v6aK5-dYVeH-5fto9F87x72t42RUsJSYWBrtUlF6TTJaEWtGLcmmmEAspJKagQtW07YFZbhqvO1KwUQgtdGyaIpSsEy902-BiDsfIQ3KDCl8QgZ145w8kZTi68U-VmqTh_kHt_DOP04P_xHx9HVu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice Boltzmann simulation of breaking waves</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Dinesh Kumar, E ; Sannasiraj, S A ; Sundar, V</creator><creatorcontrib>Dinesh Kumar, E ; Sannasiraj, S A ; Sundar, V</creatorcontrib><description>Water wave breaking at the ocean’s surface is a turbulent phenomenon and encompasses a wide range of physical processes such as generation of bubbles/drops with different spatio-temporal scales. In the present study, breaking of periodic waves in deep water regime has been simulated using phase-field lattice Boltzmann method (LBM). Compared to direct Navier–Stokes equation based numerical models, the present LB model is Poisson-free and explicit in time integration. Both the flow field and interface are solved using LBM with two sets of distribution functions. The normalized pressure-velocity formulation is used for the flow field, whereas the conservative Allen–Cahn equation is used to capture the interface. An impulsively started wave approach with Stokes third order wave profile has been used to initiate the breaking process. Through systematic variation of Weber number and initial steepness, the effect of surface tension on the kinematic, geometric, and energy dissipation characteristics has been studied for three breaker types, viz., spilling, weak plunging, and plunging breakers. The results are in good agreement with the past experimental observations and direct numerical simulation. In particular, the obtained breaking strength for different Weber numbers agrees well with the semi-empirical relation used in a wind-wave forecasting models.</description><identifier>ISSN: 0169-5983</identifier><identifier>EISSN: 1873-7005</identifier><identifier>DOI: 10.1088/1873-7005/ad481b</identifier><identifier>CODEN: FDRSEH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Allen–Cahn equation ; breaking waves ; lattice Boltzmann method ; phase-field ; two phase flow</subject><ispartof>Fluid dynamics research, 2024-06, Vol.56 (3), p.35503</ispartof><rights>2024 The Japan Society of Fluid Mechanics and IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e0dcb4892db423f0ba78fefef9a0382493996fcd07fbf715de67499b9b6e792f3</citedby><cites>FETCH-LOGICAL-c322t-e0dcb4892db423f0ba78fefef9a0382493996fcd07fbf715de67499b9b6e792f3</cites><orcidid>0000-0001-7421-0543 ; 0000-0003-4440-4771 ; 0000-0002-5788-6696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1873-7005/ad481b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Dinesh Kumar, E</creatorcontrib><creatorcontrib>Sannasiraj, S A</creatorcontrib><creatorcontrib>Sundar, V</creatorcontrib><title>Lattice Boltzmann simulation of breaking waves</title><title>Fluid dynamics research</title><addtitle>FDR</addtitle><addtitle>Fluid Dyn. Res</addtitle><description>Water wave breaking at the ocean’s surface is a turbulent phenomenon and encompasses a wide range of physical processes such as generation of bubbles/drops with different spatio-temporal scales. In the present study, breaking of periodic waves in deep water regime has been simulated using phase-field lattice Boltzmann method (LBM). Compared to direct Navier–Stokes equation based numerical models, the present LB model is Poisson-free and explicit in time integration. Both the flow field and interface are solved using LBM with two sets of distribution functions. The normalized pressure-velocity formulation is used for the flow field, whereas the conservative Allen–Cahn equation is used to capture the interface. An impulsively started wave approach with Stokes third order wave profile has been used to initiate the breaking process. Through systematic variation of Weber number and initial steepness, the effect of surface tension on the kinematic, geometric, and energy dissipation characteristics has been studied for three breaker types, viz., spilling, weak plunging, and plunging breakers. The results are in good agreement with the past experimental observations and direct numerical simulation. In particular, the obtained breaking strength for different Weber numbers agrees well with the semi-empirical relation used in a wind-wave forecasting models.</description><subject>Allen–Cahn equation</subject><subject>breaking waves</subject><subject>lattice Boltzmann method</subject><subject>phase-field</subject><subject>two phase flow</subject><issn>0169-5983</issn><issn>1873-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAQhYMoWFfvHvsD7O4kaZvkqIuuQsGLnkPSJpK1bZYkq-ivt6XiTebwYN57w3wIXWNYY-B8gzmjBQOoNqorOdYnKPtbnaIMcC2KSnB6ji5i3AMAm9wMrRuVkmtNfuf79D2occyjG469Ss6Pube5Dka9u_Et_1QfJl6iM6v6aK5-dYVeH-5fto9F87x72t42RUsJSYWBrtUlF6TTJaEWtGLcmmmEAspJKagQtW07YFZbhqvO1KwUQgtdGyaIpSsEy902-BiDsfIQ3KDCl8QgZ145w8kZTi68U-VmqTh_kHt_DOP04P_xHx9HVu4</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Dinesh Kumar, E</creator><creator>Sannasiraj, S A</creator><creator>Sundar, V</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7421-0543</orcidid><orcidid>https://orcid.org/0000-0003-4440-4771</orcidid><orcidid>https://orcid.org/0000-0002-5788-6696</orcidid></search><sort><creationdate>20240601</creationdate><title>Lattice Boltzmann simulation of breaking waves</title><author>Dinesh Kumar, E ; Sannasiraj, S A ; Sundar, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e0dcb4892db423f0ba78fefef9a0382493996fcd07fbf715de67499b9b6e792f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Allen–Cahn equation</topic><topic>breaking waves</topic><topic>lattice Boltzmann method</topic><topic>phase-field</topic><topic>two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinesh Kumar, E</creatorcontrib><creatorcontrib>Sannasiraj, S A</creatorcontrib><creatorcontrib>Sundar, V</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinesh Kumar, E</au><au>Sannasiraj, S A</au><au>Sundar, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation of breaking waves</atitle><jtitle>Fluid dynamics research</jtitle><stitle>FDR</stitle><addtitle>Fluid Dyn. Res</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>56</volume><issue>3</issue><spage>35503</spage><pages>35503-</pages><issn>0169-5983</issn><eissn>1873-7005</eissn><coden>FDRSEH</coden><abstract>Water wave breaking at the ocean’s surface is a turbulent phenomenon and encompasses a wide range of physical processes such as generation of bubbles/drops with different spatio-temporal scales. In the present study, breaking of periodic waves in deep water regime has been simulated using phase-field lattice Boltzmann method (LBM). Compared to direct Navier–Stokes equation based numerical models, the present LB model is Poisson-free and explicit in time integration. Both the flow field and interface are solved using LBM with two sets of distribution functions. The normalized pressure-velocity formulation is used for the flow field, whereas the conservative Allen–Cahn equation is used to capture the interface. An impulsively started wave approach with Stokes third order wave profile has been used to initiate the breaking process. Through systematic variation of Weber number and initial steepness, the effect of surface tension on the kinematic, geometric, and energy dissipation characteristics has been studied for three breaker types, viz., spilling, weak plunging, and plunging breakers. The results are in good agreement with the past experimental observations and direct numerical simulation. In particular, the obtained breaking strength for different Weber numbers agrees well with the semi-empirical relation used in a wind-wave forecasting models.</abstract><pub>IOP Publishing</pub><doi>10.1088/1873-7005/ad481b</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7421-0543</orcidid><orcidid>https://orcid.org/0000-0003-4440-4771</orcidid><orcidid>https://orcid.org/0000-0002-5788-6696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-5983
ispartof Fluid dynamics research, 2024-06, Vol.56 (3), p.35503
issn 0169-5983
1873-7005
language eng
recordid cdi_iop_journals_10_1088_1873_7005_ad481b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Allen–Cahn equation
breaking waves
lattice Boltzmann method
phase-field
two phase flow
title Lattice Boltzmann simulation of breaking waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20of%20breaking%20waves&rft.jtitle=Fluid%20dynamics%20research&rft.au=Dinesh%20Kumar,%20E&rft.date=2024-06-01&rft.volume=56&rft.issue=3&rft.spage=35503&rft.pages=35503-&rft.issn=0169-5983&rft.eissn=1873-7005&rft.coden=FDRSEH&rft_id=info:doi/10.1088/1873-7005/ad481b&rft_dat=%3Ciop_cross%3Efdrad481b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true