Exponential growth rate of lattice comb polymers
We investigate a lattice model of comb polymers and derive bounds on the exponential growth rate of the number of embeddings of the comb. A comb is composed of a backbone that is a self-avoiding walk and a set of t teeth, also modelled as mutually and self-avoiding walks, attached to the backbone at...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-11, Vol.57 (48), p.485002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 48 |
container_start_page | 485002 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 57 |
creator | Janse van Rensburg, E J Whittington, S G |
description | We investigate a lattice model of comb polymers and derive bounds on the exponential growth rate of the number of embeddings of the comb. A comb is composed of a backbone that is a self-avoiding walk and a set of t teeth, also modelled as mutually and self-avoiding walks, attached to the backbone at vertices or nodes of degree 3. Each tooth of the comb has m a edges and there are m b edges in the backbone between adjacent degree 3 vertices and between the first and last nodes of degree 3 and the end vertices of degree 1 of the backbone. We are interested in the exponential growth rate as t → ∞ with m a and m b fixed. We prove upper bounds on this growth rate and show that for small values of m a the growth rate is strictly less than that of self-avoiding walks. |
doi_str_mv | 10.1088/1751-8121/ad8a2d |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ad8a2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aad8a2d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-c6c9d5a879b7f3c0fd4f06f885e416c0bdecc31f45918b1c5181075ae31c5c043</originalsourceid><addsrcrecordid>eNp1j09LxDAQxYMouK7ePeYDWHembdr0KMv6Bxa86Dmk00S7tE1JIrrf3pbK3jzNY3jv8X6M3SLcI0i5wVJgIjHFjW6kTpsztjq9zk8as0t2FcIBQORQpSsGu5_RDWaIre74h3ff8ZN7HQ13lnc6xpYMJ9fXfHTdsTc-XLMLq7tgbv7umr0_7t62z8n-9ell-7BPKAUREyqoaoSWZVWXNiOwTW6hsFIKk2NBUDeGKEObiwpljSRQIpRCm2zSBHm2ZrD0kncheGPV6Nte-6NCUDOxmpHUjKcW4ilyt0RaN6qD-_LDNPB_-y_dBleS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exponential growth rate of lattice comb polymers</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Janse van Rensburg, E J ; Whittington, S G</creator><creatorcontrib>Janse van Rensburg, E J ; Whittington, S G</creatorcontrib><description>We investigate a lattice model of comb polymers and derive bounds on the exponential growth rate of the number of embeddings of the comb. A comb is composed of a backbone that is a self-avoiding walk and a set of t teeth, also modelled as mutually and self-avoiding walks, attached to the backbone at vertices or nodes of degree 3. Each tooth of the comb has m a edges and there are m b edges in the backbone between adjacent degree 3 vertices and between the first and last nodes of degree 3 and the end vertices of degree 1 of the backbone. We are interested in the exponential growth rate as t → ∞ with m a and m b fixed. We prove upper bounds on this growth rate and show that for small values of m a the growth rate is strictly less than that of self-avoiding walks.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ad8a2d</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>comb polymer ; connective constant ; growth constant ; lattice polymer ; self-avoiding walk</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2024-11, Vol.57 (48), p.485002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-c6c9d5a879b7f3c0fd4f06f885e416c0bdecc31f45918b1c5181075ae31c5c043</cites><orcidid>0000-0001-5045-8456 ; 0000-0003-4366-634X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ad8a2d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Janse van Rensburg, E J</creatorcontrib><creatorcontrib>Whittington, S G</creatorcontrib><title>Exponential growth rate of lattice comb polymers</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We investigate a lattice model of comb polymers and derive bounds on the exponential growth rate of the number of embeddings of the comb. A comb is composed of a backbone that is a self-avoiding walk and a set of t teeth, also modelled as mutually and self-avoiding walks, attached to the backbone at vertices or nodes of degree 3. Each tooth of the comb has m a edges and there are m b edges in the backbone between adjacent degree 3 vertices and between the first and last nodes of degree 3 and the end vertices of degree 1 of the backbone. We are interested in the exponential growth rate as t → ∞ with m a and m b fixed. We prove upper bounds on this growth rate and show that for small values of m a the growth rate is strictly less than that of self-avoiding walks.</description><subject>comb polymer</subject><subject>connective constant</subject><subject>growth constant</subject><subject>lattice polymer</subject><subject>self-avoiding walk</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j09LxDAQxYMouK7ePeYDWHembdr0KMv6Bxa86Dmk00S7tE1JIrrf3pbK3jzNY3jv8X6M3SLcI0i5wVJgIjHFjW6kTpsztjq9zk8as0t2FcIBQORQpSsGu5_RDWaIre74h3ff8ZN7HQ13lnc6xpYMJ9fXfHTdsTc-XLMLq7tgbv7umr0_7t62z8n-9ell-7BPKAUREyqoaoSWZVWXNiOwTW6hsFIKk2NBUDeGKEObiwpljSRQIpRCm2zSBHm2ZrD0kncheGPV6Nte-6NCUDOxmpHUjKcW4ilyt0RaN6qD-_LDNPB_-y_dBleS</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Janse van Rensburg, E J</creator><creator>Whittington, S G</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5045-8456</orcidid><orcidid>https://orcid.org/0000-0003-4366-634X</orcidid></search><sort><creationdate>20241129</creationdate><title>Exponential growth rate of lattice comb polymers</title><author>Janse van Rensburg, E J ; Whittington, S G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-c6c9d5a879b7f3c0fd4f06f885e416c0bdecc31f45918b1c5181075ae31c5c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>comb polymer</topic><topic>connective constant</topic><topic>growth constant</topic><topic>lattice polymer</topic><topic>self-avoiding walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janse van Rensburg, E J</creatorcontrib><creatorcontrib>Whittington, S G</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janse van Rensburg, E J</au><au>Whittington, S G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential growth rate of lattice comb polymers</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2024-11-29</date><risdate>2024</risdate><volume>57</volume><issue>48</issue><spage>485002</spage><pages>485002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We investigate a lattice model of comb polymers and derive bounds on the exponential growth rate of the number of embeddings of the comb. A comb is composed of a backbone that is a self-avoiding walk and a set of t teeth, also modelled as mutually and self-avoiding walks, attached to the backbone at vertices or nodes of degree 3. Each tooth of the comb has m a edges and there are m b edges in the backbone between adjacent degree 3 vertices and between the first and last nodes of degree 3 and the end vertices of degree 1 of the backbone. We are interested in the exponential growth rate as t → ∞ with m a and m b fixed. We prove upper bounds on this growth rate and show that for small values of m a the growth rate is strictly less than that of self-avoiding walks.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ad8a2d</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5045-8456</orcidid><orcidid>https://orcid.org/0000-0003-4366-634X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2024-11, Vol.57 (48), p.485002 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_ad8a2d |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | comb polymer connective constant growth constant lattice polymer self-avoiding walk |
title | Exponential growth rate of lattice comb polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20growth%20rate%20of%20lattice%20comb%20polymers&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Janse%20van%20Rensburg,%20E%20J&rft.date=2024-11-29&rft.volume=57&rft.issue=48&rft.spage=485002&rft.pages=485002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ad8a2d&rft_dat=%3Ciop_cross%3Eaad8a2d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |