Quantum coherence from Kirkwood–Dirac nonclassicality, some bounds, and operational interpretation

Just a few years after the inception of quantum mechanics, there has been a research program using the nonclassical values of some quasiprobability distributions to delineate the nonclassical aspects of quantum phenomena. In particular, in KD (Kirkwood-Dirac) quasiprobability distribution, the disti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2024-06, Vol.57 (25)
Hauptverfasser: Budiyono, Agung, Sumbowo, Joel F, Agusta, Mohammad K, Nurhandoko, Bagus E B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Journal of physics. A, Mathematical and theoretical
container_volume 57
creator Budiyono, Agung
Sumbowo, Joel F
Agusta, Mohammad K
Nurhandoko, Bagus E B
description Just a few years after the inception of quantum mechanics, there has been a research program using the nonclassical values of some quasiprobability distributions to delineate the nonclassical aspects of quantum phenomena. In particular, in KD (Kirkwood-Dirac) quasiprobability distribution, the distinctive quantum mechanical feature of noncommutativity which underlies many nonclassical phenomena, manifests in the nonreal values and/or the negative values of the real part. Here, we develop a faithful quantifier of quantum coherence based on the KD nonclassicality which captures simultaneously the nonreality and the negativity of the KD quasiprobability. The KD-nonclassicality coherence thus defined, is upper bounded by the uncertainty of the outcomes of measurement described by a rank-1 orthogonal PVM (projection-valued measure) corresponding to the incoherent orthonormal basis which is quantified by the Tsallis $\frac{1}{2}$-entropy. Moreover, they are identical for pure states so that the KD-nonclassicallity coherence for pure state admits a simple closed expression in terms of measurement probabilities. We then use the Maassen-Uffink uncertainty relation for min-entropy and max-entropy to obtain a lower bound for the KD-nonclassicality coherence of a pure state in terms of optimal guessing probability in measurement described by a PVM noncommuting with the incoherent orthonormal basis. We also derive a trade-off relation for the KD-noncassicality coherences of a pure state relative to a pair of noncommuting orthonormal bases with a state-independent lower bound. Finally, we sketch a variational scheme for a direct estimation of the KD-nonclassicality coherence based on weak value measurement and thereby discuss its relation with quantum contextuality.
doi_str_mv 10.1088/1751-8121/ad4f37
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ad4f37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aad4f37</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-74b9ff7bc2e4d5bfa7745d1ebe31b764c9925094042163a69e640e58a075c5aa3</originalsourceid><addsrcrecordid>eNp1kE1OwzAUhC0EEqWwZ-kDNNRO7DhZogIFUQkhwdp68Y9wSezIToS64w7ckJPQUtQdq3kazTyNPoQuKbmipKrmVHCaVTSnc9DMFuIITQ7W8eGmxSk6S2lNCGekzidIP4_gh7HDKryZaLwy2MbQ4UcX3z9C0N-fXzcugsI-eNVCSk5B64bNDKfQGdyE0es0w-A1Dr2JMLjgocXODyb20Qy_xjk6sdAmc_GnU_R6d_uyuM9WT8uHxfUqUznhQyZYU1srGpUbpnljQQjGNTWNKWgjSqbqOuekZoTltCygrE3JiOEVEMEVByimiOz_qhhSisbKProO4kZSIneU5A6D3CGRe0rbymxfcaGX6zDG7fr0f_wHlexrxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum coherence from Kirkwood–Dirac nonclassicality, some bounds, and operational interpretation</title><source>Institute of Physics Journals</source><creator>Budiyono, Agung ; Sumbowo, Joel F ; Agusta, Mohammad K ; Nurhandoko, Bagus E B</creator><creatorcontrib>Budiyono, Agung ; Sumbowo, Joel F ; Agusta, Mohammad K ; Nurhandoko, Bagus E B</creatorcontrib><description>Just a few years after the inception of quantum mechanics, there has been a research program using the nonclassical values of some quasiprobability distributions to delineate the nonclassical aspects of quantum phenomena. In particular, in KD (Kirkwood-Dirac) quasiprobability distribution, the distinctive quantum mechanical feature of noncommutativity which underlies many nonclassical phenomena, manifests in the nonreal values and/or the negative values of the real part. Here, we develop a faithful quantifier of quantum coherence based on the KD nonclassicality which captures simultaneously the nonreality and the negativity of the KD quasiprobability. The KD-nonclassicality coherence thus defined, is upper bounded by the uncertainty of the outcomes of measurement described by a rank-1 orthogonal PVM (projection-valued measure) corresponding to the incoherent orthonormal basis which is quantified by the Tsallis $\frac{1}{2}$-entropy. Moreover, they are identical for pure states so that the KD-nonclassicallity coherence for pure state admits a simple closed expression in terms of measurement probabilities. We then use the Maassen-Uffink uncertainty relation for min-entropy and max-entropy to obtain a lower bound for the KD-nonclassicality coherence of a pure state in terms of optimal guessing probability in measurement described by a PVM noncommuting with the incoherent orthonormal basis. We also derive a trade-off relation for the KD-noncassicality coherences of a pure state relative to a pair of noncommuting orthonormal bases with a state-independent lower bound. Finally, we sketch a variational scheme for a direct estimation of the KD-nonclassicality coherence based on weak value measurement and thereby discuss its relation with quantum contextuality.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ad4f37</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Kirkwood–Dirac nonclassicality ; measurement uncertainty ; optimal guessing probability ; quantum coherence ; quantum contextuality ; trade-off relation ; weak value</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2024-06, Vol.57 (25)</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9091-8645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ad4f37/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Budiyono, Agung</creatorcontrib><creatorcontrib>Sumbowo, Joel F</creatorcontrib><creatorcontrib>Agusta, Mohammad K</creatorcontrib><creatorcontrib>Nurhandoko, Bagus E B</creatorcontrib><title>Quantum coherence from Kirkwood–Dirac nonclassicality, some bounds, and operational interpretation</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Just a few years after the inception of quantum mechanics, there has been a research program using the nonclassical values of some quasiprobability distributions to delineate the nonclassical aspects of quantum phenomena. In particular, in KD (Kirkwood-Dirac) quasiprobability distribution, the distinctive quantum mechanical feature of noncommutativity which underlies many nonclassical phenomena, manifests in the nonreal values and/or the negative values of the real part. Here, we develop a faithful quantifier of quantum coherence based on the KD nonclassicality which captures simultaneously the nonreality and the negativity of the KD quasiprobability. The KD-nonclassicality coherence thus defined, is upper bounded by the uncertainty of the outcomes of measurement described by a rank-1 orthogonal PVM (projection-valued measure) corresponding to the incoherent orthonormal basis which is quantified by the Tsallis $\frac{1}{2}$-entropy. Moreover, they are identical for pure states so that the KD-nonclassicallity coherence for pure state admits a simple closed expression in terms of measurement probabilities. We then use the Maassen-Uffink uncertainty relation for min-entropy and max-entropy to obtain a lower bound for the KD-nonclassicality coherence of a pure state in terms of optimal guessing probability in measurement described by a PVM noncommuting with the incoherent orthonormal basis. We also derive a trade-off relation for the KD-noncassicality coherences of a pure state relative to a pair of noncommuting orthonormal bases with a state-independent lower bound. Finally, we sketch a variational scheme for a direct estimation of the KD-nonclassicality coherence based on weak value measurement and thereby discuss its relation with quantum contextuality.</description><subject>Kirkwood–Dirac nonclassicality</subject><subject>measurement uncertainty</subject><subject>optimal guessing probability</subject><subject>quantum coherence</subject><subject>quantum contextuality</subject><subject>trade-off relation</subject><subject>weak value</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAUhC0EEqWwZ-kDNNRO7DhZogIFUQkhwdp68Y9wSezIToS64w7ckJPQUtQdq3kazTyNPoQuKbmipKrmVHCaVTSnc9DMFuIITQ7W8eGmxSk6S2lNCGekzidIP4_gh7HDKryZaLwy2MbQ4UcX3z9C0N-fXzcugsI-eNVCSk5B64bNDKfQGdyE0es0w-A1Dr2JMLjgocXODyb20Qy_xjk6sdAmc_GnU_R6d_uyuM9WT8uHxfUqUznhQyZYU1srGpUbpnljQQjGNTWNKWgjSqbqOuekZoTltCygrE3JiOEVEMEVByimiOz_qhhSisbKProO4kZSIneU5A6D3CGRe0rbymxfcaGX6zDG7fr0f_wHlexrxA</recordid><startdate>20240621</startdate><enddate>20240621</enddate><creator>Budiyono, Agung</creator><creator>Sumbowo, Joel F</creator><creator>Agusta, Mohammad K</creator><creator>Nurhandoko, Bagus E B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9091-8645</orcidid></search><sort><creationdate>20240621</creationdate><title>Quantum coherence from Kirkwood–Dirac nonclassicality, some bounds, and operational interpretation</title><author>Budiyono, Agung ; Sumbowo, Joel F ; Agusta, Mohammad K ; Nurhandoko, Bagus E B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-74b9ff7bc2e4d5bfa7745d1ebe31b764c9925094042163a69e640e58a075c5aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Kirkwood–Dirac nonclassicality</topic><topic>measurement uncertainty</topic><topic>optimal guessing probability</topic><topic>quantum coherence</topic><topic>quantum contextuality</topic><topic>trade-off relation</topic><topic>weak value</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budiyono, Agung</creatorcontrib><creatorcontrib>Sumbowo, Joel F</creatorcontrib><creatorcontrib>Agusta, Mohammad K</creatorcontrib><creatorcontrib>Nurhandoko, Bagus E B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budiyono, Agung</au><au>Sumbowo, Joel F</au><au>Agusta, Mohammad K</au><au>Nurhandoko, Bagus E B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum coherence from Kirkwood–Dirac nonclassicality, some bounds, and operational interpretation</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2024-06-21</date><risdate>2024</risdate><volume>57</volume><issue>25</issue><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Just a few years after the inception of quantum mechanics, there has been a research program using the nonclassical values of some quasiprobability distributions to delineate the nonclassical aspects of quantum phenomena. In particular, in KD (Kirkwood-Dirac) quasiprobability distribution, the distinctive quantum mechanical feature of noncommutativity which underlies many nonclassical phenomena, manifests in the nonreal values and/or the negative values of the real part. Here, we develop a faithful quantifier of quantum coherence based on the KD nonclassicality which captures simultaneously the nonreality and the negativity of the KD quasiprobability. The KD-nonclassicality coherence thus defined, is upper bounded by the uncertainty of the outcomes of measurement described by a rank-1 orthogonal PVM (projection-valued measure) corresponding to the incoherent orthonormal basis which is quantified by the Tsallis $\frac{1}{2}$-entropy. Moreover, they are identical for pure states so that the KD-nonclassicallity coherence for pure state admits a simple closed expression in terms of measurement probabilities. We then use the Maassen-Uffink uncertainty relation for min-entropy and max-entropy to obtain a lower bound for the KD-nonclassicality coherence of a pure state in terms of optimal guessing probability in measurement described by a PVM noncommuting with the incoherent orthonormal basis. We also derive a trade-off relation for the KD-noncassicality coherences of a pure state relative to a pair of noncommuting orthonormal bases with a state-independent lower bound. Finally, we sketch a variational scheme for a direct estimation of the KD-nonclassicality coherence based on weak value measurement and thereby discuss its relation with quantum contextuality.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ad4f37</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9091-8645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2024-06, Vol.57 (25)
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_ad4f37
source Institute of Physics Journals
subjects Kirkwood–Dirac nonclassicality
measurement uncertainty
optimal guessing probability
quantum coherence
quantum contextuality
trade-off relation
weak value
title Quantum coherence from Kirkwood–Dirac nonclassicality, some bounds, and operational interpretation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20coherence%20from%20Kirkwood%E2%80%93Dirac%20nonclassicality,%20some%20bounds,%20and%20operational%20interpretation&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Budiyono,%20Agung&rft.date=2024-06-21&rft.volume=57&rft.issue=25&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ad4f37&rft_dat=%3Ciop_cross%3Eaad4f37%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true