Towards a quadratic Poisson algebra for the subtracted classical monodromy of symmetric space sine-Gordon theories

Symmetric space sine-Gordon theories are two-dimensional massive integrable field theories, generalising the sine-Gordon and complex sine-Gordon theories. To study their integrability properties on the real line, it is necessary to introduce a subtracted monodromy matrix. Moreover, since the theorie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.Phys.A 2024-02, Vol.57 (6), p.65401
Hauptverfasser: Delduc, F, Hoare, B, Magro, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Symmetric space sine-Gordon theories are two-dimensional massive integrable field theories, generalising the sine-Gordon and complex sine-Gordon theories. To study their integrability properties on the real line, it is necessary to introduce a subtracted monodromy matrix. Moreover, since the theories are not ultralocal, a regularisation is required to compute the Poisson algebra for the subtracted monodromy. In this article, we regularise and compute this Poisson algebra for certain configurations, and show that it can both satisfy the Jacobi identity and imply the existence of an infinite number of conserved quantities in involution.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ad1d91