A QP perspective on topology change in Poisson–Lie T-duality

We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-06, Vol.56 (25), p.255205
Hauptverfasser: Arvanitakis, Alex S, Blair, Chris D A, Thompson, Daniel C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page 255205
container_title Journal of physics. A, Mathematical and theoretical
container_volume 56
creator Arvanitakis, Alex S
Blair, Chris D A
Thompson, Daniel C
description We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of bibundle structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.
doi_str_mv 10.1088/1751-8121/acd503
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_acd503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacd503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</originalsourceid><addsrcrecordid>eNp1j0tLw0AUhQdRsFb3Lmflyth55OaxEUrxBQEr1PUwmUedEjMhkwrZ-R_8h_4SEyJdKVw4l8s5h_shdEnJDSVZtqAp0CijjC6k0kD4EZodTseHnfJTdBbCjhCISc5m6HaJX9a4MW1ojOrch8G-xp1vfOW3PVZvst4a7Gq89i4EX39_fhXO4E2k97JyXX-OTqysgrn41Tl6vb_brB6j4vnhabUsIsWBd1EiNcs0xDklSus8HUYqI3MAQ6VJaGKs1SSPYwAFJeNlOUjGmUlTK6kt-RyRqVe1PoTWWNG07l22vaBEjPxiBBQjrJj4h8jVFHG-ETu_b-vhQSEFJILBMMAIiEbbwXj9h_Hf3h_WlGmS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A QP perspective on topology change in Poisson–Lie T-duality</title><source>Institute of Physics Journals</source><creator>Arvanitakis, Alex S ; Blair, Chris D A ; Thompson, Daniel C</creator><creatorcontrib>Arvanitakis, Alex S ; Blair, Chris D A ; Thompson, Daniel C</creatorcontrib><description>We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of bibundle structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acd503</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>graded symplectic geometry ; Poisson–Lie duality ; T-duality ; topological T-duality</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (25), p.255205</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</citedby><cites>FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</cites><orcidid>0000-0001-8319-8275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acd503/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Arvanitakis, Alex S</creatorcontrib><creatorcontrib>Blair, Chris D A</creatorcontrib><creatorcontrib>Thompson, Daniel C</creatorcontrib><title>A QP perspective on topology change in Poisson–Lie T-duality</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of bibundle structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.</description><subject>graded symplectic geometry</subject><subject>Poisson–Lie duality</subject><subject>T-duality</subject><subject>topological T-duality</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0tLw0AUhQdRsFb3Lmflyth55OaxEUrxBQEr1PUwmUedEjMhkwrZ-R_8h_4SEyJdKVw4l8s5h_shdEnJDSVZtqAp0CijjC6k0kD4EZodTseHnfJTdBbCjhCISc5m6HaJX9a4MW1ojOrch8G-xp1vfOW3PVZvst4a7Gq89i4EX39_fhXO4E2k97JyXX-OTqysgrn41Tl6vb_brB6j4vnhabUsIsWBd1EiNcs0xDklSus8HUYqI3MAQ6VJaGKs1SSPYwAFJeNlOUjGmUlTK6kt-RyRqVe1PoTWWNG07l22vaBEjPxiBBQjrJj4h8jVFHG-ETu_b-vhQSEFJILBMMAIiEbbwXj9h_Hf3h_WlGmS</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Arvanitakis, Alex S</creator><creator>Blair, Chris D A</creator><creator>Thompson, Daniel C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8319-8275</orcidid></search><sort><creationdate>20230623</creationdate><title>A QP perspective on topology change in Poisson–Lie T-duality</title><author>Arvanitakis, Alex S ; Blair, Chris D A ; Thompson, Daniel C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>graded symplectic geometry</topic><topic>Poisson–Lie duality</topic><topic>T-duality</topic><topic>topological T-duality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvanitakis, Alex S</creatorcontrib><creatorcontrib>Blair, Chris D A</creatorcontrib><creatorcontrib>Thompson, Daniel C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvanitakis, Alex S</au><au>Blair, Chris D A</au><au>Thompson, Daniel C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A QP perspective on topology change in Poisson–Lie T-duality</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-06-23</date><risdate>2023</risdate><volume>56</volume><issue>25</issue><spage>255205</spage><pages>255205-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of bibundle structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acd503</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-8319-8275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (25), p.255205
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_acd503
source Institute of Physics Journals
subjects graded symplectic geometry
Poisson–Lie duality
T-duality
topological T-duality
title A QP perspective on topology change in Poisson–Lie T-duality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20QP%20perspective%20on%20topology%20change%20in%20Poisson%E2%80%93Lie%20T-duality&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Arvanitakis,%20Alex%20S&rft.date=2023-06-23&rft.volume=56&rft.issue=25&rft.spage=255205&rft.pages=255205-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acd503&rft_dat=%3Ciop_cross%3Eaacd503%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true