A QP perspective on topology change in Poisson–Lie T-duality
We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-06, Vol.56 (25), p.255205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | 255205 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 56 |
creator | Arvanitakis, Alex S Blair, Chris D A Thompson, Daniel C |
description | We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of
bibundle
structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality. |
doi_str_mv | 10.1088/1751-8121/acd503 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_acd503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacd503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</originalsourceid><addsrcrecordid>eNp1j0tLw0AUhQdRsFb3Lmflyth55OaxEUrxBQEr1PUwmUedEjMhkwrZ-R_8h_4SEyJdKVw4l8s5h_shdEnJDSVZtqAp0CijjC6k0kD4EZodTseHnfJTdBbCjhCISc5m6HaJX9a4MW1ojOrch8G-xp1vfOW3PVZvst4a7Gq89i4EX39_fhXO4E2k97JyXX-OTqysgrn41Tl6vb_brB6j4vnhabUsIsWBd1EiNcs0xDklSus8HUYqI3MAQ6VJaGKs1SSPYwAFJeNlOUjGmUlTK6kt-RyRqVe1PoTWWNG07l22vaBEjPxiBBQjrJj4h8jVFHG-ETu_b-vhQSEFJILBMMAIiEbbwXj9h_Hf3h_WlGmS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A QP perspective on topology change in Poisson–Lie T-duality</title><source>Institute of Physics Journals</source><creator>Arvanitakis, Alex S ; Blair, Chris D A ; Thompson, Daniel C</creator><creatorcontrib>Arvanitakis, Alex S ; Blair, Chris D A ; Thompson, Daniel C</creatorcontrib><description>We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of
bibundle
structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acd503</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>graded symplectic geometry ; Poisson–Lie duality ; T-duality ; topological T-duality</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (25), p.255205</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</citedby><cites>FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</cites><orcidid>0000-0001-8319-8275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acd503/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Arvanitakis, Alex S</creatorcontrib><creatorcontrib>Blair, Chris D A</creatorcontrib><creatorcontrib>Thompson, Daniel C</creatorcontrib><title>A QP perspective on topology change in Poisson–Lie T-duality</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of
bibundle
structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.</description><subject>graded symplectic geometry</subject><subject>Poisson–Lie duality</subject><subject>T-duality</subject><subject>topological T-duality</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0tLw0AUhQdRsFb3Lmflyth55OaxEUrxBQEr1PUwmUedEjMhkwrZ-R_8h_4SEyJdKVw4l8s5h_shdEnJDSVZtqAp0CijjC6k0kD4EZodTseHnfJTdBbCjhCISc5m6HaJX9a4MW1ojOrch8G-xp1vfOW3PVZvst4a7Gq89i4EX39_fhXO4E2k97JyXX-OTqysgrn41Tl6vb_brB6j4vnhabUsIsWBd1EiNcs0xDklSus8HUYqI3MAQ6VJaGKs1SSPYwAFJeNlOUjGmUlTK6kt-RyRqVe1PoTWWNG07l22vaBEjPxiBBQjrJj4h8jVFHG-ETu_b-vhQSEFJILBMMAIiEbbwXj9h_Hf3h_WlGmS</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Arvanitakis, Alex S</creator><creator>Blair, Chris D A</creator><creator>Thompson, Daniel C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8319-8275</orcidid></search><sort><creationdate>20230623</creationdate><title>A QP perspective on topology change in Poisson–Lie T-duality</title><author>Arvanitakis, Alex S ; Blair, Chris D A ; Thompson, Daniel C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6ad28d54910cdd97d97acea955e1ae616effd094455c5b23bbc5b832e77fa1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>graded symplectic geometry</topic><topic>Poisson–Lie duality</topic><topic>T-duality</topic><topic>topological T-duality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arvanitakis, Alex S</creatorcontrib><creatorcontrib>Blair, Chris D A</creatorcontrib><creatorcontrib>Thompson, Daniel C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arvanitakis, Alex S</au><au>Blair, Chris D A</au><au>Thompson, Daniel C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A QP perspective on topology change in Poisson–Lie T-duality</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-06-23</date><risdate>2023</risdate><volume>56</volume><issue>25</issue><spage>255205</spage><pages>255205-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We describe topological T-duality and Poisson–Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ‘correspondence’ space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of
bibundle
structure on correspondence space realises changes in the global fibration structure under Poisson–Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier–Mukai integral transformation for Poisson–Lie T-duality.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acd503</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-8319-8275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2023-06, Vol.56 (25), p.255205 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_acd503 |
source | Institute of Physics Journals |
subjects | graded symplectic geometry Poisson–Lie duality T-duality topological T-duality |
title | A QP perspective on topology change in Poisson–Lie T-duality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20QP%20perspective%20on%20topology%20change%20in%20Poisson%E2%80%93Lie%20T-duality&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Arvanitakis,%20Alex%20S&rft.date=2023-06-23&rft.volume=56&rft.issue=25&rft.spage=255205&rft.pages=255205-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acd503&rft_dat=%3Ciop_cross%3Eaacd503%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |