Decoherence: a numerical study
We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation fo...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-02, Vol.56 (8), p.85301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85301 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 56 |
creator | Nagele, Chris Janssen, Oliver Kleban, Matthew |
description | We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state. |
doi_str_mv | 10.1088/1751-8121/acb977 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_acb977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacb977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-ff7c2ee6d4443a606bc28d647fd7a0fbcd88a9841c57b4c53ad2ce3620f24ec3</originalsourceid><addsrcrecordid>eNp1j0tPwzAQhC0EEqVw54TyAwhdv2KHGypPqRKX3i1nvRap2qSym0P_PY2CeuM0q9HMaj7G7jk8cbB2wY3mpeWCLzw2tTEXbHa2Ls83l9fsJucNgFZQixl7eCXsfyhRh_Rc-KIbdpRa9NsiH4ZwvGVX0W8z3f3pnK3f39bLz3L1_fG1fFmVKIw-lDEaFERVUEpJX0HVoLChUiYG4yE2GKz1tVUctWkUaumDQJKVgCgUoZwzmN5i6nNOFN0-tTufjo6DG_HcuN-NLG7CO1Uep0rb792mH1J32vd__BcJRlBT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decoherence: a numerical study</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nagele, Chris ; Janssen, Oliver ; Kleban, Matthew</creator><creatorcontrib>Nagele, Chris ; Janssen, Oliver ; Kleban, Matthew</creatorcontrib><description>We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acb977</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>decoherence ; environment-induced superselection ; relativistic quantum field theory ; spread of decoherence in a relativistic theory</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-02, Vol.56 (8), p.85301</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-ff7c2ee6d4443a606bc28d647fd7a0fbcd88a9841c57b4c53ad2ce3620f24ec3</cites><orcidid>0000-0001-7911-9992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acb977/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Nagele, Chris</creatorcontrib><creatorcontrib>Janssen, Oliver</creatorcontrib><creatorcontrib>Kleban, Matthew</creatorcontrib><title>Decoherence: a numerical study</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.</description><subject>decoherence</subject><subject>environment-induced superselection</subject><subject>relativistic quantum field theory</subject><subject>spread of decoherence in a relativistic theory</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwzAQhC0EEqVw54TyAwhdv2KHGypPqRKX3i1nvRap2qSym0P_PY2CeuM0q9HMaj7G7jk8cbB2wY3mpeWCLzw2tTEXbHa2Ls83l9fsJucNgFZQixl7eCXsfyhRh_Rc-KIbdpRa9NsiH4ZwvGVX0W8z3f3pnK3f39bLz3L1_fG1fFmVKIw-lDEaFERVUEpJX0HVoLChUiYG4yE2GKz1tVUctWkUaumDQJKVgCgUoZwzmN5i6nNOFN0-tTufjo6DG_HcuN-NLG7CO1Uep0rb792mH1J32vd__BcJRlBT</recordid><startdate>20230224</startdate><enddate>20230224</enddate><creator>Nagele, Chris</creator><creator>Janssen, Oliver</creator><creator>Kleban, Matthew</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7911-9992</orcidid></search><sort><creationdate>20230224</creationdate><title>Decoherence: a numerical study</title><author>Nagele, Chris ; Janssen, Oliver ; Kleban, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-ff7c2ee6d4443a606bc28d647fd7a0fbcd88a9841c57b4c53ad2ce3620f24ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>decoherence</topic><topic>environment-induced superselection</topic><topic>relativistic quantum field theory</topic><topic>spread of decoherence in a relativistic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagele, Chris</creatorcontrib><creatorcontrib>Janssen, Oliver</creatorcontrib><creatorcontrib>Kleban, Matthew</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagele, Chris</au><au>Janssen, Oliver</au><au>Kleban, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoherence: a numerical study</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-02-24</date><risdate>2023</risdate><volume>56</volume><issue>8</issue><spage>85301</spage><pages>85301-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acb977</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7911-9992</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2023-02, Vol.56 (8), p.85301 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_acb977 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | decoherence environment-induced superselection relativistic quantum field theory spread of decoherence in a relativistic theory |
title | Decoherence: a numerical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoherence:%20a%20numerical%20study&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Nagele,%20Chris&rft.date=2023-02-24&rft.volume=56&rft.issue=8&rft.spage=85301&rft.pages=85301-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acb977&rft_dat=%3Ciop_cross%3Eaacb977%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |