Decoherence: a numerical study

We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2023-02, Vol.56 (8), p.85301
Hauptverfasser: Nagele, Chris, Janssen, Oliver, Kleban, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85301
container_title Journal of physics. A, Mathematical and theoretical
container_volume 56
creator Nagele, Chris
Janssen, Oliver
Kleban, Matthew
description We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.
doi_str_mv 10.1088/1751-8121/acb977
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_acb977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aacb977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-ff7c2ee6d4443a606bc28d647fd7a0fbcd88a9841c57b4c53ad2ce3620f24ec3</originalsourceid><addsrcrecordid>eNp1j0tPwzAQhC0EEqVw54TyAwhdv2KHGypPqRKX3i1nvRap2qSym0P_PY2CeuM0q9HMaj7G7jk8cbB2wY3mpeWCLzw2tTEXbHa2Ls83l9fsJucNgFZQixl7eCXsfyhRh_Rc-KIbdpRa9NsiH4ZwvGVX0W8z3f3pnK3f39bLz3L1_fG1fFmVKIw-lDEaFERVUEpJX0HVoLChUiYG4yE2GKz1tVUctWkUaumDQJKVgCgUoZwzmN5i6nNOFN0-tTufjo6DG_HcuN-NLG7CO1Uep0rb792mH1J32vd__BcJRlBT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decoherence: a numerical study</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Nagele, Chris ; Janssen, Oliver ; Kleban, Matthew</creator><creatorcontrib>Nagele, Chris ; Janssen, Oliver ; Kleban, Matthew</creatorcontrib><description>We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/acb977</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>decoherence ; environment-induced superselection ; relativistic quantum field theory ; spread of decoherence in a relativistic theory</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2023-02, Vol.56 (8), p.85301</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-ff7c2ee6d4443a606bc28d647fd7a0fbcd88a9841c57b4c53ad2ce3620f24ec3</cites><orcidid>0000-0001-7911-9992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/acb977/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Nagele, Chris</creatorcontrib><creatorcontrib>Janssen, Oliver</creatorcontrib><creatorcontrib>Kleban, Matthew</creatorcontrib><title>Decoherence: a numerical study</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.</description><subject>decoherence</subject><subject>environment-induced superselection</subject><subject>relativistic quantum field theory</subject><subject>spread of decoherence in a relativistic theory</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1j0tPwzAQhC0EEqVw54TyAwhdv2KHGypPqRKX3i1nvRap2qSym0P_PY2CeuM0q9HMaj7G7jk8cbB2wY3mpeWCLzw2tTEXbHa2Ls83l9fsJucNgFZQixl7eCXsfyhRh_Rc-KIbdpRa9NsiH4ZwvGVX0W8z3f3pnK3f39bLz3L1_fG1fFmVKIw-lDEaFERVUEpJX0HVoLChUiYG4yE2GKz1tVUctWkUaumDQJKVgCgUoZwzmN5i6nNOFN0-tTufjo6DG_HcuN-NLG7CO1Uep0rb792mH1J32vd__BcJRlBT</recordid><startdate>20230224</startdate><enddate>20230224</enddate><creator>Nagele, Chris</creator><creator>Janssen, Oliver</creator><creator>Kleban, Matthew</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7911-9992</orcidid></search><sort><creationdate>20230224</creationdate><title>Decoherence: a numerical study</title><author>Nagele, Chris ; Janssen, Oliver ; Kleban, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-ff7c2ee6d4443a606bc28d647fd7a0fbcd88a9841c57b4c53ad2ce3620f24ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>decoherence</topic><topic>environment-induced superselection</topic><topic>relativistic quantum field theory</topic><topic>spread of decoherence in a relativistic theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagele, Chris</creatorcontrib><creatorcontrib>Janssen, Oliver</creatorcontrib><creatorcontrib>Kleban, Matthew</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagele, Chris</au><au>Janssen, Oliver</au><au>Kleban, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoherence: a numerical study</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2023-02-24</date><risdate>2023</risdate><volume>56</volume><issue>8</issue><spage>85301</spage><pages>85301-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We study quantum decoherence numerically in a system consisting of a relativistic quantum field theory coupled to a measuring device that is itself coupled to an environment. The measuring device and environment are treated as quantum, non-relativistic particles. We solve the Schrödinger equation for the wave function of this tripartite system using exact diagonalization. Although computational limitations on the size of the Hilbert space prevent us from exploring the regime where the device and environment consist of a truly macroscopic number of degrees of freedom, we nevertheless see clear evidence of decoherence: after tracing out the environment, the density matrix describing the system and measuring device evolves quickly towards a matrix that is close to diagonal in a subspace of pointer states. We measure the speed with which decoherence spreads in the relativistic quantum field theory for a range of parameters. We find that it is less than the speed of light but faster than the speed of the massive charges in the initial state.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/acb977</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7911-9992</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2023-02, Vol.56 (8), p.85301
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_acb977
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects decoherence
environment-induced superselection
relativistic quantum field theory
spread of decoherence in a relativistic theory
title Decoherence: a numerical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoherence:%20a%20numerical%20study&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Nagele,%20Chris&rft.date=2023-02-24&rft.volume=56&rft.issue=8&rft.spage=85301&rft.pages=85301-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/acb977&rft_dat=%3Ciop_cross%3Eaacb977%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true