Grothendieck bound in a single quantum system

Grothendieck’s bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-10, Vol.55 (43), p.435206
1. Verfasser: Vourdas, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page 435206
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Vourdas, A
description Grothendieck’s bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex numbers in the unit disc, and takes values less than 1. It then proves that if the complex numbers are replaced with vectors in the unit ball of the Hilbert space, then the ‘quantum’ quadratic form Q might take values greater than 1, up to the complex Grothendieck constant k G . The Grothendieck theorem is reformulated here in terms of arbitrary matrices (which are multiplied with appropriate normalisation prefactors), so that it is directly applicable to quantum quantities. The emphasis in the paper is in the ‘Grothendieck region’ ( 1 , k G ) , which is a classically forbidden region in the sense that C cannot take values in it. Necessary (but not sufficient) conditions for Q taking values in the Grothendieck region are given. Two examples that involve physical quantities in systems with six and 12-dimensional Hilbert space, are shown to lead to Q in the Grothendieck region ( 1 , k G ) . They involve projectors of the overlaps of novel generalised coherent states that resolve the identity and have a discrete isotropy.
doi_str_mv 10.1088/1751-8121/ac9dcf
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ac9dcf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac9dcf</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-ab947b8943f696754b734d8d2638900c74bd1b5fc027da95299ce58c1c8e96ff3</originalsourceid><addsrcrecordid>eNp1jz1PwzAQhi0EEqWwM_oHEHp27NgeUQUtUiUWmC1_QkrjFDsZ-u9pFdSN6T29uud0D0L3BB4JSLkggpNKEkoWxinv4gWanavL80zqa3RTyhaAM1B0hqpV7oevkHwb3De2_Zg8bhM2uLTpcxfwz2jSMHa4HMoQult0Fc2uhLu_nKOPl-f35bravK1el0-bylEJQ2WsYsJKxerYqEZwZkXNvPS0qaUCcIJZTyyPDqjwRnGqlAtcOuJkUE2M9RzBdNflvpQcot7ntjP5oAnok64--eiTm550j8jDhLT9Xm_7Mafjg_-v_wJms1aF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grothendieck bound in a single quantum system</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vourdas, A</creator><creatorcontrib>Vourdas, A</creatorcontrib><description>Grothendieck’s bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex numbers in the unit disc, and takes values less than 1. It then proves that if the complex numbers are replaced with vectors in the unit ball of the Hilbert space, then the ‘quantum’ quadratic form Q might take values greater than 1, up to the complex Grothendieck constant k G . The Grothendieck theorem is reformulated here in terms of arbitrary matrices (which are multiplied with appropriate normalisation prefactors), so that it is directly applicable to quantum quantities. The emphasis in the paper is in the ‘Grothendieck region’ ( 1 , k G ) , which is a classically forbidden region in the sense that C cannot take values in it. Necessary (but not sufficient) conditions for Q taking values in the Grothendieck region are given. Two examples that involve physical quantities in systems with six and 12-dimensional Hilbert space, are shown to lead to Q in the Grothendieck region ( 1 , k G ) . They involve projectors of the overlaps of novel generalised coherent states that resolve the identity and have a discrete isotropy.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac9dcf</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Grothendieck bound ; quantum states in the Grothendieck region ; quantum systems with finite-dimensional Hilbert space</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-10, Vol.55 (43), p.435206</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-ab947b8943f696754b734d8d2638900c74bd1b5fc027da95299ce58c1c8e96ff3</citedby><cites>FETCH-LOGICAL-c280t-ab947b8943f696754b734d8d2638900c74bd1b5fc027da95299ce58c1c8e96ff3</cites><orcidid>0000-0003-4289-3305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac9dcf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Vourdas, A</creatorcontrib><title>Grothendieck bound in a single quantum system</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Grothendieck’s bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex numbers in the unit disc, and takes values less than 1. It then proves that if the complex numbers are replaced with vectors in the unit ball of the Hilbert space, then the ‘quantum’ quadratic form Q might take values greater than 1, up to the complex Grothendieck constant k G . The Grothendieck theorem is reformulated here in terms of arbitrary matrices (which are multiplied with appropriate normalisation prefactors), so that it is directly applicable to quantum quantities. The emphasis in the paper is in the ‘Grothendieck region’ ( 1 , k G ) , which is a classically forbidden region in the sense that C cannot take values in it. Necessary (but not sufficient) conditions for Q taking values in the Grothendieck region are given. Two examples that involve physical quantities in systems with six and 12-dimensional Hilbert space, are shown to lead to Q in the Grothendieck region ( 1 , k G ) . They involve projectors of the overlaps of novel generalised coherent states that resolve the identity and have a discrete isotropy.</description><subject>Grothendieck bound</subject><subject>quantum states in the Grothendieck region</subject><subject>quantum systems with finite-dimensional Hilbert space</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQhi0EEqWwM_oHEHp27NgeUQUtUiUWmC1_QkrjFDsZ-u9pFdSN6T29uud0D0L3BB4JSLkggpNKEkoWxinv4gWanavL80zqa3RTyhaAM1B0hqpV7oevkHwb3De2_Zg8bhM2uLTpcxfwz2jSMHa4HMoQult0Fc2uhLu_nKOPl-f35bravK1el0-bylEJQ2WsYsJKxerYqEZwZkXNvPS0qaUCcIJZTyyPDqjwRnGqlAtcOuJkUE2M9RzBdNflvpQcot7ntjP5oAnok64--eiTm550j8jDhLT9Xm_7Mafjg_-v_wJms1aF</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Vourdas, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4289-3305</orcidid></search><sort><creationdate>20221028</creationdate><title>Grothendieck bound in a single quantum system</title><author>Vourdas, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-ab947b8943f696754b734d8d2638900c74bd1b5fc027da95299ce58c1c8e96ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Grothendieck bound</topic><topic>quantum states in the Grothendieck region</topic><topic>quantum systems with finite-dimensional Hilbert space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vourdas, A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vourdas, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grothendieck bound in a single quantum system</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>55</volume><issue>43</issue><spage>435206</spage><pages>435206-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Grothendieck’s bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a ‘classical’ quadratic form C that uses complex numbers in the unit disc, and takes values less than 1. It then proves that if the complex numbers are replaced with vectors in the unit ball of the Hilbert space, then the ‘quantum’ quadratic form Q might take values greater than 1, up to the complex Grothendieck constant k G . The Grothendieck theorem is reformulated here in terms of arbitrary matrices (which are multiplied with appropriate normalisation prefactors), so that it is directly applicable to quantum quantities. The emphasis in the paper is in the ‘Grothendieck region’ ( 1 , k G ) , which is a classically forbidden region in the sense that C cannot take values in it. Necessary (but not sufficient) conditions for Q taking values in the Grothendieck region are given. Two examples that involve physical quantities in systems with six and 12-dimensional Hilbert space, are shown to lead to Q in the Grothendieck region ( 1 , k G ) . They involve projectors of the overlaps of novel generalised coherent states that resolve the identity and have a discrete isotropy.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac9dcf</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4289-3305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-10, Vol.55 (43), p.435206
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_ac9dcf
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Grothendieck bound
quantum states in the Grothendieck region
quantum systems with finite-dimensional Hilbert space
title Grothendieck bound in a single quantum system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grothendieck%20bound%20in%20a%20single%20quantum%20system&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Vourdas,%20A&rft.date=2022-10-28&rft.volume=55&rft.issue=43&rft.spage=435206&rft.pages=435206-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac9dcf&rft_dat=%3Ciop_cross%3Eaac9dcf%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true