Spatial search on Johnson graphs by discrete-time quantum walk

The spatial search problem aims to find a marked vertex of a finite graph using a dynamic with two constraints: (1) the walker has no compass and (2) the walker can check whether a vertex is marked only after reaching it. This problem is a generalization of unsorted database search and has many appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-06, Vol.55 (25), p.255304
Hauptverfasser: Tanaka, Hajime, Sabri, Mohamed, Portugal, Renato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spatial search problem aims to find a marked vertex of a finite graph using a dynamic with two constraints: (1) the walker has no compass and (2) the walker can check whether a vertex is marked only after reaching it. This problem is a generalization of unsorted database search and has many applications to algorithms. Classical algorithms that solve the spatial search problem are based on random walks and the computational complexity is determined by the hitting time. On the other hand, quantum algorithms are based on quantum walks and the computational complexity is determined not only by the number of steps to reach a marked vertex, but also by the success probability, since we need to perform a measurement at the end of the algorithm to determine the walker’s position. In this work, we address the spatial search problem on Johnson graphs using the coined quantum walk model. Since Johnson graphs are vertex- and distance-transitive, we have found an invariant subspace of the Hilbert space, which aids in the calculation of the computational complexity. We have shown that, for every fixed diameter, the asymptotic success probability is 1/2 after taking π N / ( 2 2 ) steps, where N is the number of vertices of the Johnson graph.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ac6f30