Holomorphicity, vortex attachment, gauge invariance and the fractional quantum Hall effect

A gauge invariant reformulation of nonrelativistic fermions in background magnetic fields is used to obtain the Laughlin and Jain wave functions as exact results in mean field theory (MFT). The gauge invariant framework trades the U (1) gauge symmetry for an emergent holomorphic symmetry and fluxes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-01, Vol.55 (2), p.25402
1. Verfasser: Agarwal, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25402
container_title Journal of physics. A, Mathematical and theoretical
container_volume 55
creator Agarwal, Abhishek
description A gauge invariant reformulation of nonrelativistic fermions in background magnetic fields is used to obtain the Laughlin and Jain wave functions as exact results in mean field theory (MFT). The gauge invariant framework trades the U (1) gauge symmetry for an emergent holomorphic symmetry and fluxes for vortices. The novel holomorphic invariance is used to develop an analytical method for attaching vortices to particles. Vortex attachment methods introduced in this paper are subsequently employed to construct the Read operator within a second quantized framework and obtain the Laughlin and Jain wave functions as exact results entirely within a mean-field approximation. The gauge invariant framework and vortex attachment techniques are generalized to the case of spherical geometry and spherical counterparts of Laughlin and Jain wave functions are also obtained exactly within MFT.
doi_str_mv 10.1088/1751-8121/ac3d67
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ac3d67</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aac3d67</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-94fba3482c2fbf88227833c074dad7bd3faab7ae1a505737dfa549823f766213</originalsourceid><addsrcrecordid>eNp9kM1LAzEUxIMoWKt3j7l469p8bJr0KEWtUPDSk5fwNh9tyu5mzWaL_e9tqXgST_MYZh7MD6F7Sh4pUWpKpaCFooxOwXA7kxdo9Gtd_t6UX6Obvt8RIkoyZyP0sYx1bGLqtsGEfJjgfUzZfWHIGcy2cW2e4A0MG4dDu4cUoDUOQ2tx3jrsE5gcYgs1_hygzUODl1DX2HnvTL5FVx7q3t396BitX57Xi2Wxen99WzytCsMpycW89BXwUjHDfOWVYkwqzg2RpQUrK8s9QCXBURBESC6tB1HOFeNezmaM8jEi57cmxb5PzusuhQbSQVOiT2j0abs-cdBnNMfK5FwJsdO7OKTjgv6_-MMfcdBCaKYJO5JkurOefwPwyXK5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Holomorphicity, vortex attachment, gauge invariance and the fractional quantum Hall effect</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Agarwal, Abhishek</creator><creatorcontrib>Agarwal, Abhishek</creatorcontrib><description>A gauge invariant reformulation of nonrelativistic fermions in background magnetic fields is used to obtain the Laughlin and Jain wave functions as exact results in mean field theory (MFT). The gauge invariant framework trades the U (1) gauge symmetry for an emergent holomorphic symmetry and fluxes for vortices. The novel holomorphic invariance is used to develop an analytical method for attaching vortices to particles. Vortex attachment methods introduced in this paper are subsequently employed to construct the Read operator within a second quantized framework and obtain the Laughlin and Jain wave functions as exact results entirely within a mean-field approximation. The gauge invariant framework and vortex attachment techniques are generalized to the case of spherical geometry and spherical counterparts of Laughlin and Jain wave functions are also obtained exactly within MFT.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ac3d67</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>2 + 1 ; composite bosons ; composite fermions ; field theories in ; fractional quantum Hall effect</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2022-01, Vol.55 (2), p.25402</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-94fba3482c2fbf88227833c074dad7bd3faab7ae1a505737dfa549823f766213</citedby><cites>FETCH-LOGICAL-c310t-94fba3482c2fbf88227833c074dad7bd3faab7ae1a505737dfa549823f766213</cites><orcidid>0000-0002-1539-4028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ac3d67/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Agarwal, Abhishek</creatorcontrib><title>Holomorphicity, vortex attachment, gauge invariance and the fractional quantum Hall effect</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>A gauge invariant reformulation of nonrelativistic fermions in background magnetic fields is used to obtain the Laughlin and Jain wave functions as exact results in mean field theory (MFT). The gauge invariant framework trades the U (1) gauge symmetry for an emergent holomorphic symmetry and fluxes for vortices. The novel holomorphic invariance is used to develop an analytical method for attaching vortices to particles. Vortex attachment methods introduced in this paper are subsequently employed to construct the Read operator within a second quantized framework and obtain the Laughlin and Jain wave functions as exact results entirely within a mean-field approximation. The gauge invariant framework and vortex attachment techniques are generalized to the case of spherical geometry and spherical counterparts of Laughlin and Jain wave functions are also obtained exactly within MFT.</description><subject>2 + 1</subject><subject>composite bosons</subject><subject>composite fermions</subject><subject>field theories in</subject><subject>fractional quantum Hall effect</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEUxIMoWKt3j7l469p8bJr0KEWtUPDSk5fwNh9tyu5mzWaL_e9tqXgST_MYZh7MD6F7Sh4pUWpKpaCFooxOwXA7kxdo9Gtd_t6UX6Obvt8RIkoyZyP0sYx1bGLqtsGEfJjgfUzZfWHIGcy2cW2e4A0MG4dDu4cUoDUOQ2tx3jrsE5gcYgs1_hygzUODl1DX2HnvTL5FVx7q3t396BitX57Xi2Wxen99WzytCsMpycW89BXwUjHDfOWVYkwqzg2RpQUrK8s9QCXBURBESC6tB1HOFeNezmaM8jEi57cmxb5PzusuhQbSQVOiT2j0abs-cdBnNMfK5FwJsdO7OKTjgv6_-MMfcdBCaKYJO5JkurOefwPwyXK5</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Agarwal, Abhishek</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1539-4028</orcidid></search><sort><creationdate>20220114</creationdate><title>Holomorphicity, vortex attachment, gauge invariance and the fractional quantum Hall effect</title><author>Agarwal, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-94fba3482c2fbf88227833c074dad7bd3faab7ae1a505737dfa549823f766213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2 + 1</topic><topic>composite bosons</topic><topic>composite fermions</topic><topic>field theories in</topic><topic>fractional quantum Hall effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Abhishek</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holomorphicity, vortex attachment, gauge invariance and the fractional quantum Hall effect</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2022-01-14</date><risdate>2022</risdate><volume>55</volume><issue>2</issue><spage>25402</spage><pages>25402-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>A gauge invariant reformulation of nonrelativistic fermions in background magnetic fields is used to obtain the Laughlin and Jain wave functions as exact results in mean field theory (MFT). The gauge invariant framework trades the U (1) gauge symmetry for an emergent holomorphic symmetry and fluxes for vortices. The novel holomorphic invariance is used to develop an analytical method for attaching vortices to particles. Vortex attachment methods introduced in this paper are subsequently employed to construct the Read operator within a second quantized framework and obtain the Laughlin and Jain wave functions as exact results entirely within a mean-field approximation. The gauge invariant framework and vortex attachment techniques are generalized to the case of spherical geometry and spherical counterparts of Laughlin and Jain wave functions are also obtained exactly within MFT.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ac3d67</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1539-4028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2022-01, Vol.55 (2), p.25402
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_ac3d67
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 2 + 1
composite bosons
composite fermions
field theories in
fractional quantum Hall effect
title Holomorphicity, vortex attachment, gauge invariance and the fractional quantum Hall effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holomorphicity,%20vortex%20attachment,%20gauge%20invariance%20and%20the%20fractional%20quantum%20Hall%20effect&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Agarwal,%20Abhishek&rft.date=2022-01-14&rft.volume=55&rft.issue=2&rft.spage=25402&rft.pages=25402-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ac3d67&rft_dat=%3Ciop_cross%3Eaac3d67%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true