Symmetric discrete AKP and BKP equations

We show that when KP (Kadomtsev-Petviashvili) τ functions allow special symmetries, the discrete BKP equation can be expressed as a linear combination of the discrete AKP equation and its reflected symmetric forms. Thus the discrete AKP and BKP equations can share the same τ functions with these sym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2021-02, Vol.54 (7), p.75201
Hauptverfasser: Li, Shangshuai, Nijhoff, Frank W, Sun, Ying-ying, Zhang, Da-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75201
container_title Journal of physics. A, Mathematical and theoretical
container_volume 54
creator Li, Shangshuai
Nijhoff, Frank W
Sun, Ying-ying
Zhang, Da-jun
description We show that when KP (Kadomtsev-Petviashvili) τ functions allow special symmetries, the discrete BKP equation can be expressed as a linear combination of the discrete AKP equation and its reflected symmetric forms. Thus the discrete AKP and BKP equations can share the same τ functions with these symmetries. Such a connection is extended to 4 dimensional (i.e. higher order) discrete AKP and BKP equations in the corresponding discrete hierarchies. Various explicit forms of such τ functions, including Hirota's form, Gramian, Casoratian and polynomial, are given. Symmetric τ functions of Cauchy matrix form that are composed of Weierstrass σ functions are investigated. As a result we obtain a discrete BKP equation with elliptic coefficients.
doi_str_mv 10.1088/1751-8121/abd998
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_abd998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aabd998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b8dc0eb96792e26080ff9f222487524c820608956d33798ee52dca3c6eee38533</originalsourceid><addsrcrecordid>eNp9j81LxDAUxIMouK7ePfYieLC7L0nTJsd1UVdcUFDPIU1eoIv9MOke9r-3pbIn8TSPYeYxP0KuKSwoSLmkhaCppIwuTemUkidkdrROjzfl5-Qixh2AyECxGbl9P9Q19qGyiauiDdhjsnp5S0zjkvtB8Xtv-qpt4iU58-Yr4tWvzsnn48PHepNuX5-e16ttarlgfVpKZwFLlReKIctBgvfKM8YyWQiWWclgMJXIHeeFkoiCOWu4zRGRS8H5nMD014Y2xoBed6GqTThoCnok1SOKHrH0RDpU7qZK1XZ61-5DMwz8L37zR9xokelCw7ASqO6c5z_vpV65</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetric discrete AKP and BKP equations</title><source>Institute of Physics Journals</source><creator>Li, Shangshuai ; Nijhoff, Frank W ; Sun, Ying-ying ; Zhang, Da-jun</creator><creatorcontrib>Li, Shangshuai ; Nijhoff, Frank W ; Sun, Ying-ying ; Zhang, Da-jun</creatorcontrib><description>We show that when KP (Kadomtsev-Petviashvili) τ functions allow special symmetries, the discrete BKP equation can be expressed as a linear combination of the discrete AKP equation and its reflected symmetric forms. Thus the discrete AKP and BKP equations can share the same τ functions with these symmetries. Such a connection is extended to 4 dimensional (i.e. higher order) discrete AKP and BKP equations in the corresponding discrete hierarchies. Various explicit forms of such τ functions, including Hirota's form, Gramian, Casoratian and polynomial, are given. Symmetric τ functions of Cauchy matrix form that are composed of Weierstrass σ functions are investigated. As a result we obtain a discrete BKP equation with elliptic coefficients.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/abd998</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>discrete AKP ; discrete BKP ; elliptic function ; solution ; symmetric tau function</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2021-02, Vol.54 (7), p.75201</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b8dc0eb96792e26080ff9f222487524c820608956d33798ee52dca3c6eee38533</citedby><cites>FETCH-LOGICAL-c352t-b8dc0eb96792e26080ff9f222487524c820608956d33798ee52dca3c6eee38533</cites><orcidid>0000-0003-3691-4165 ; 0000-0002-1520-0502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/abd998/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Li, Shangshuai</creatorcontrib><creatorcontrib>Nijhoff, Frank W</creatorcontrib><creatorcontrib>Sun, Ying-ying</creatorcontrib><creatorcontrib>Zhang, Da-jun</creatorcontrib><title>Symmetric discrete AKP and BKP equations</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We show that when KP (Kadomtsev-Petviashvili) τ functions allow special symmetries, the discrete BKP equation can be expressed as a linear combination of the discrete AKP equation and its reflected symmetric forms. Thus the discrete AKP and BKP equations can share the same τ functions with these symmetries. Such a connection is extended to 4 dimensional (i.e. higher order) discrete AKP and BKP equations in the corresponding discrete hierarchies. Various explicit forms of such τ functions, including Hirota's form, Gramian, Casoratian and polynomial, are given. Symmetric τ functions of Cauchy matrix form that are composed of Weierstrass σ functions are investigated. As a result we obtain a discrete BKP equation with elliptic coefficients.</description><subject>discrete AKP</subject><subject>discrete BKP</subject><subject>elliptic function</subject><subject>solution</subject><subject>symmetric tau function</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j81LxDAUxIMouK7ePfYieLC7L0nTJsd1UVdcUFDPIU1eoIv9MOke9r-3pbIn8TSPYeYxP0KuKSwoSLmkhaCppIwuTemUkidkdrROjzfl5-Qixh2AyECxGbl9P9Q19qGyiauiDdhjsnp5S0zjkvtB8Xtv-qpt4iU58-Yr4tWvzsnn48PHepNuX5-e16ttarlgfVpKZwFLlReKIctBgvfKM8YyWQiWWclgMJXIHeeFkoiCOWu4zRGRS8H5nMD014Y2xoBed6GqTThoCnok1SOKHrH0RDpU7qZK1XZ61-5DMwz8L37zR9xokelCw7ASqO6c5z_vpV65</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Li, Shangshuai</creator><creator>Nijhoff, Frank W</creator><creator>Sun, Ying-ying</creator><creator>Zhang, Da-jun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3691-4165</orcidid><orcidid>https://orcid.org/0000-0002-1520-0502</orcidid></search><sort><creationdate>20210219</creationdate><title>Symmetric discrete AKP and BKP equations</title><author>Li, Shangshuai ; Nijhoff, Frank W ; Sun, Ying-ying ; Zhang, Da-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b8dc0eb96792e26080ff9f222487524c820608956d33798ee52dca3c6eee38533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>discrete AKP</topic><topic>discrete BKP</topic><topic>elliptic function</topic><topic>solution</topic><topic>symmetric tau function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shangshuai</creatorcontrib><creatorcontrib>Nijhoff, Frank W</creatorcontrib><creatorcontrib>Sun, Ying-ying</creatorcontrib><creatorcontrib>Zhang, Da-jun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shangshuai</au><au>Nijhoff, Frank W</au><au>Sun, Ying-ying</au><au>Zhang, Da-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric discrete AKP and BKP equations</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>54</volume><issue>7</issue><spage>75201</spage><pages>75201-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We show that when KP (Kadomtsev-Petviashvili) τ functions allow special symmetries, the discrete BKP equation can be expressed as a linear combination of the discrete AKP equation and its reflected symmetric forms. Thus the discrete AKP and BKP equations can share the same τ functions with these symmetries. Such a connection is extended to 4 dimensional (i.e. higher order) discrete AKP and BKP equations in the corresponding discrete hierarchies. Various explicit forms of such τ functions, including Hirota's form, Gramian, Casoratian and polynomial, are given. Symmetric τ functions of Cauchy matrix form that are composed of Weierstrass σ functions are investigated. As a result we obtain a discrete BKP equation with elliptic coefficients.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/abd998</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3691-4165</orcidid><orcidid>https://orcid.org/0000-0002-1520-0502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2021-02, Vol.54 (7), p.75201
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_abd998
source Institute of Physics Journals
subjects discrete AKP
discrete BKP
elliptic function
solution
symmetric tau function
title Symmetric discrete AKP and BKP equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T04%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20discrete%20AKP%20and%20BKP%20equations&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Li,%20Shangshuai&rft.date=2021-02-19&rft.volume=54&rft.issue=7&rft.spage=75201&rft.pages=75201-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/abd998&rft_dat=%3Ciop_cross%3Eaabd998%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true