The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres
We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in phys...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-10, Vol.53 (40), p.405203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 40 |
container_start_page | 405203 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 53 |
creator | Kuru, Ş Marquette, I Negro, J |
description | We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3). |
doi_str_mv | 10.1088/1751-8121/abadb7 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_abadb7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aabadb7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrd495uTJtZNk080epWgVCoJUr2GSnfRBt7sk20P_vVtWehJhYIbvMcx8jN0LeBJgzEQUWmRGSDFBh5UrLtjoDF2eZ6Gu2U1KWwCdQylH7Hu5Jr6iPUXc8U_0uOa4W5GLyDHxrifTsa6pi8cz3oTBsPE9lzqqE2_2vE10qJostWuKlG7ZVcBdorvfPmZfry_L2Vu2-Ji_z54XmVdCdNmUiBx5DwUEESQEH9A4dGVZOZlDVUx1Loz0jsqqQGlQK1LgnSlE0Oi9GjMY9vrYpBQp2DZuaoxHK8CecrGnx-0pBDvk0lseB8umae22OcR9f-B_8oc_5Gi1sjn0pSUo21ZB_QCJFXOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kuru, Ş ; Marquette, I ; Negro, J</creator><creatorcontrib>Kuru, Ş ; Marquette, I ; Negro, J</creatorcontrib><description>We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/abadb7</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>pseudo spheres ; Racah algebra ; spectrum ; superintegrable system ; symmetry algebra</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-10, Vol.53 (40), p.405203</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</citedby><cites>FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</cites><orcidid>0000-0002-0847-6420 ; 0000-0001-6380-280X ; 0000-0003-4654-6810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/abadb7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Kuru, Ş</creatorcontrib><creatorcontrib>Marquette, I</creatorcontrib><creatorcontrib>Negro, J</creatorcontrib><title>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).</description><subject>pseudo spheres</subject><subject>Racah algebra</subject><subject>spectrum</subject><subject>superintegrable system</subject><subject>symmetry algebra</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgrd495uTJtZNk080epWgVCoJUr2GSnfRBt7sk20P_vVtWehJhYIbvMcx8jN0LeBJgzEQUWmRGSDFBh5UrLtjoDF2eZ6Gu2U1KWwCdQylH7Hu5Jr6iPUXc8U_0uOa4W5GLyDHxrifTsa6pi8cz3oTBsPE9lzqqE2_2vE10qJostWuKlG7ZVcBdorvfPmZfry_L2Vu2-Ji_z54XmVdCdNmUiBx5DwUEESQEH9A4dGVZOZlDVUx1Loz0jsqqQGlQK1LgnSlE0Oi9GjMY9vrYpBQp2DZuaoxHK8CecrGnx-0pBDvk0lseB8umae22OcR9f-B_8oc_5Gi1sjn0pSUo21ZB_QCJFXOU</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Kuru, Ş</creator><creator>Marquette, I</creator><creator>Negro, J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0847-6420</orcidid><orcidid>https://orcid.org/0000-0001-6380-280X</orcidid><orcidid>https://orcid.org/0000-0003-4654-6810</orcidid></search><sort><creationdate>20201009</creationdate><title>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</title><author>Kuru, Ş ; Marquette, I ; Negro, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>pseudo spheres</topic><topic>Racah algebra</topic><topic>spectrum</topic><topic>superintegrable system</topic><topic>symmetry algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuru, Ş</creatorcontrib><creatorcontrib>Marquette, I</creatorcontrib><creatorcontrib>Negro, J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuru, Ş</au><au>Marquette, I</au><au>Negro, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-10-09</date><risdate>2020</risdate><volume>53</volume><issue>40</issue><spage>405203</spage><pages>405203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/abadb7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0847-6420</orcidid><orcidid>https://orcid.org/0000-0001-6380-280X</orcidid><orcidid>https://orcid.org/0000-0003-4654-6810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2020-10, Vol.53 (40), p.405203 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_abadb7 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | pseudo spheres Racah algebra spectrum superintegrable system symmetry algebra |
title | The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20general%20Racah%20algebra%20as%20the%20symmetry%20algebra%20of%20generic%20systems%20on%20pseudo-spheres&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Kuru,%20%C5%9E&rft.date=2020-10-09&rft.volume=53&rft.issue=40&rft.spage=405203&rft.pages=405203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/abadb7&rft_dat=%3Ciop_cross%3Eaabadb7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |