The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres

We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in phys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-10, Vol.53 (40), p.405203
Hauptverfasser: Kuru, Ş, Marquette, I, Negro, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 40
container_start_page 405203
container_title Journal of physics. A, Mathematical and theoretical
container_volume 53
creator Kuru, Ş
Marquette, I
Negro, J
description We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).
doi_str_mv 10.1088/1751-8121/abadb7
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_abadb7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aabadb7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrd495uTJtZNk080epWgVCoJUr2GSnfRBt7sk20P_vVtWehJhYIbvMcx8jN0LeBJgzEQUWmRGSDFBh5UrLtjoDF2eZ6Gu2U1KWwCdQylH7Hu5Jr6iPUXc8U_0uOa4W5GLyDHxrifTsa6pi8cz3oTBsPE9lzqqE2_2vE10qJostWuKlG7ZVcBdorvfPmZfry_L2Vu2-Ji_z54XmVdCdNmUiBx5DwUEESQEH9A4dGVZOZlDVUx1Loz0jsqqQGlQK1LgnSlE0Oi9GjMY9vrYpBQp2DZuaoxHK8CecrGnx-0pBDvk0lseB8umae22OcR9f-B_8oc_5Gi1sjn0pSUo21ZB_QCJFXOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kuru, Ş ; Marquette, I ; Negro, J</creator><creatorcontrib>Kuru, Ş ; Marquette, I ; Negro, J</creatorcontrib><description>We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/abadb7</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>pseudo spheres ; Racah algebra ; spectrum ; superintegrable system ; symmetry algebra</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-10, Vol.53 (40), p.405203</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</citedby><cites>FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</cites><orcidid>0000-0002-0847-6420 ; 0000-0001-6380-280X ; 0000-0003-4654-6810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/abadb7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Kuru, Ş</creatorcontrib><creatorcontrib>Marquette, I</creatorcontrib><creatorcontrib>Negro, J</creatorcontrib><title>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).</description><subject>pseudo spheres</subject><subject>Racah algebra</subject><subject>spectrum</subject><subject>superintegrable system</subject><subject>symmetry algebra</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgrd495uTJtZNk080epWgVCoJUr2GSnfRBt7sk20P_vVtWehJhYIbvMcx8jN0LeBJgzEQUWmRGSDFBh5UrLtjoDF2eZ6Gu2U1KWwCdQylH7Hu5Jr6iPUXc8U_0uOa4W5GLyDHxrifTsa6pi8cz3oTBsPE9lzqqE2_2vE10qJostWuKlG7ZVcBdorvfPmZfry_L2Vu2-Ji_z54XmVdCdNmUiBx5DwUEESQEH9A4dGVZOZlDVUx1Loz0jsqqQGlQK1LgnSlE0Oi9GjMY9vrYpBQp2DZuaoxHK8CecrGnx-0pBDvk0lseB8umae22OcR9f-B_8oc_5Gi1sjn0pSUo21ZB_QCJFXOU</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Kuru, Ş</creator><creator>Marquette, I</creator><creator>Negro, J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0847-6420</orcidid><orcidid>https://orcid.org/0000-0001-6380-280X</orcidid><orcidid>https://orcid.org/0000-0003-4654-6810</orcidid></search><sort><creationdate>20201009</creationdate><title>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</title><author>Kuru, Ş ; Marquette, I ; Negro, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-6eeebecc070f1f20fcfa8bab99db240d7654182cbe9d7a28a53e30cb871f5acc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>pseudo spheres</topic><topic>Racah algebra</topic><topic>spectrum</topic><topic>superintegrable system</topic><topic>symmetry algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuru, Ş</creatorcontrib><creatorcontrib>Marquette, I</creatorcontrib><creatorcontrib>Negro, J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuru, Ş</au><au>Marquette, I</au><au>Negro, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-10-09</date><risdate>2020</risdate><volume>53</volume><issue>40</issue><spage>405203</spage><pages>405203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We characterize the symmetry algebra of the generic superintegrable system on a pseudo-sphere corresponding to the homogeneous space SO(p, q + 1)/SO(p, q) where p+q=N, N∈N. These symmetries occur both in quantum as well as in classical systems in various contexts, so they are quite important in physics. We show that this algebra is independent of the signature (p, q + 1) of the metric and that it is the same as the Racah algebra R(N+1). The spectrum obtained from R(N+1) via the Daskaloyannis method depends on undetermined signs that can be associated to the signatures. Two examples are worked out explicitly for the cases SO(2, 1)/SO(2) and SO(3)/SO(2) where it is shown that their spectrum obtained by means of separation of variables coincide with particular choices of the signs, corresponding to the specific signatures, of the spectrum for the symmetry algebra R(3).</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/abadb7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0847-6420</orcidid><orcidid>https://orcid.org/0000-0001-6380-280X</orcidid><orcidid>https://orcid.org/0000-0003-4654-6810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2020-10, Vol.53 (40), p.405203
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_abadb7
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects pseudo spheres
Racah algebra
spectrum
superintegrable system
symmetry algebra
title The general Racah algebra as the symmetry algebra of generic systems on pseudo-spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20general%20Racah%20algebra%20as%20the%20symmetry%20algebra%20of%20generic%20systems%20on%20pseudo-spheres&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Kuru,%20%C5%9E&rft.date=2020-10-09&rft.volume=53&rft.issue=40&rft.spage=405203&rft.pages=405203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/abadb7&rft_dat=%3Ciop_cross%3Eaabadb7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true