Recovery map stability for the data processing inequality

Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-01, Vol.53 (3), p.35204
Hauptverfasser: Carlen, Eric A, Vershynina, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35204
container_title Journal of physics. A, Mathematical and theoretical
container_volume 53
creator Carlen, Eric A
Vershynina, Anna
description Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.
doi_str_mv 10.1088/1751-8121/ab5ab7
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ab5ab7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aab5ab7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMouK7ePeYHWDcvadrmKIu6woIgeg4vaaJZdtuadIX-e1sqe_M0j2HmMR8ht8DugVXVCkoJWQUcVmgkmvKMLE7W-ekGcUmuUtoxJnOm-IKoN2fbHxcHesCOph5N2Id-oL6NtP9ytMYeaRdb61IKzScNjfs-4hS5Jhce98nd_OmSfDw9vq832fb1-WX9sM2s4LzPTFnWyjOLwnNmitwIyMEwb5xQjhvIlZKV9KXkdeE9FujsOBNrQObRKi-WhM1_bWxTis7rLoYDxkED0xO6ntj0xKln9LFyN1dC2-lde4zNOPD_-C8Dv1vM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recovery map stability for the data processing inequality</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Carlen, Eric A ; Vershynina, Anna</creator><creatorcontrib>Carlen, Eric A ; Vershynina, Anna</creatorcontrib><description>Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab5ab7</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Accardi-Cecchini coarse graining map ; data processing inequality ; monotonicity inequality ; Petz recovery map ; quantum relative entropy</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-01, Vol.53 (3), p.35204</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</citedby><cites>FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</cites><orcidid>0000-0001-5108-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab5ab7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids></links><search><creatorcontrib>Carlen, Eric A</creatorcontrib><creatorcontrib>Vershynina, Anna</creatorcontrib><title>Recovery map stability for the data processing inequality</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.</description><subject>Accardi-Cecchini coarse graining map</subject><subject>data processing inequality</subject><subject>monotonicity inequality</subject><subject>Petz recovery map</subject><subject>quantum relative entropy</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAUhIMouK7ePeYHWDcvadrmKIu6woIgeg4vaaJZdtuadIX-e1sqe_M0j2HmMR8ht8DugVXVCkoJWQUcVmgkmvKMLE7W-ekGcUmuUtoxJnOm-IKoN2fbHxcHesCOph5N2Id-oL6NtP9ytMYeaRdb61IKzScNjfs-4hS5Jhce98nd_OmSfDw9vq832fb1-WX9sM2s4LzPTFnWyjOLwnNmitwIyMEwb5xQjhvIlZKV9KXkdeE9FujsOBNrQObRKi-WhM1_bWxTis7rLoYDxkED0xO6ntj0xKln9LFyN1dC2-lde4zNOPD_-C8Dv1vM</recordid><startdate>20200124</startdate><enddate>20200124</enddate><creator>Carlen, Eric A</creator><creator>Vershynina, Anna</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5108-1531</orcidid></search><sort><creationdate>20200124</creationdate><title>Recovery map stability for the data processing inequality</title><author>Carlen, Eric A ; Vershynina, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accardi-Cecchini coarse graining map</topic><topic>data processing inequality</topic><topic>monotonicity inequality</topic><topic>Petz recovery map</topic><topic>quantum relative entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlen, Eric A</creatorcontrib><creatorcontrib>Vershynina, Anna</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlen, Eric A</au><au>Vershynina, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery map stability for the data processing inequality</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-01-24</date><risdate>2020</risdate><volume>53</volume><issue>3</issue><spage>35204</spage><pages>35204-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab5ab7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5108-1531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2020-01, Vol.53 (3), p.35204
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_ab5ab7
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Accardi-Cecchini coarse graining map
data processing inequality
monotonicity inequality
Petz recovery map
quantum relative entropy
title Recovery map stability for the data processing inequality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20map%20stability%20for%20the%20data%20processing%20inequality&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Carlen,%20Eric%20A&rft.date=2020-01-24&rft.volume=53&rft.issue=3&rft.spage=35204&rft.pages=35204-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab5ab7&rft_dat=%3Ciop_cross%3Eaab5ab7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true