Recovery map stability for the data processing inequality
Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz re...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2020-01, Vol.53 (3), p.35204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35204 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 53 |
creator | Carlen, Eric A Vershynina, Anna |
description | Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map. |
doi_str_mv | 10.1088/1751-8121/ab5ab7 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_ab5ab7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aab5ab7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMouK7ePeYHWDcvadrmKIu6woIgeg4vaaJZdtuadIX-e1sqe_M0j2HmMR8ht8DugVXVCkoJWQUcVmgkmvKMLE7W-ekGcUmuUtoxJnOm-IKoN2fbHxcHesCOph5N2Id-oL6NtP9ytMYeaRdb61IKzScNjfs-4hS5Jhce98nd_OmSfDw9vq832fb1-WX9sM2s4LzPTFnWyjOLwnNmitwIyMEwb5xQjhvIlZKV9KXkdeE9FujsOBNrQObRKi-WhM1_bWxTis7rLoYDxkED0xO6ntj0xKln9LFyN1dC2-lde4zNOPD_-C8Dv1vM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recovery map stability for the data processing inequality</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Carlen, Eric A ; Vershynina, Anna</creator><creatorcontrib>Carlen, Eric A ; Vershynina, Anna</creatorcontrib><description>Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/ab5ab7</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Accardi-Cecchini coarse graining map ; data processing inequality ; monotonicity inequality ; Petz recovery map ; quantum relative entropy</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2020-01, Vol.53 (3), p.35204</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</citedby><cites>FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</cites><orcidid>0000-0001-5108-1531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/ab5ab7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids></links><search><creatorcontrib>Carlen, Eric A</creatorcontrib><creatorcontrib>Vershynina, Anna</creatorcontrib><title>Recovery map stability for the data processing inequality</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.</description><subject>Accardi-Cecchini coarse graining map</subject><subject>data processing inequality</subject><subject>monotonicity inequality</subject><subject>Petz recovery map</subject><subject>quantum relative entropy</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAUhIMouK7ePeYHWDcvadrmKIu6woIgeg4vaaJZdtuadIX-e1sqe_M0j2HmMR8ht8DugVXVCkoJWQUcVmgkmvKMLE7W-ekGcUmuUtoxJnOm-IKoN2fbHxcHesCOph5N2Id-oL6NtP9ytMYeaRdb61IKzScNjfs-4hS5Jhce98nd_OmSfDw9vq832fb1-WX9sM2s4LzPTFnWyjOLwnNmitwIyMEwb5xQjhvIlZKV9KXkdeE9FujsOBNrQObRKi-WhM1_bWxTis7rLoYDxkED0xO6ntj0xKln9LFyN1dC2-lde4zNOPD_-C8Dv1vM</recordid><startdate>20200124</startdate><enddate>20200124</enddate><creator>Carlen, Eric A</creator><creator>Vershynina, Anna</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5108-1531</orcidid></search><sort><creationdate>20200124</creationdate><title>Recovery map stability for the data processing inequality</title><author>Carlen, Eric A ; Vershynina, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b77d9f0ca3f20b64b3141b0fbe39e2b1499585f752d6ffa6aec811ad1a0fac9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accardi-Cecchini coarse graining map</topic><topic>data processing inequality</topic><topic>monotonicity inequality</topic><topic>Petz recovery map</topic><topic>quantum relative entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlen, Eric A</creatorcontrib><creatorcontrib>Vershynina, Anna</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlen, Eric A</au><au>Vershynina, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery map stability for the data processing inequality</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2020-01-24</date><risdate>2020</risdate><volume>53</volume><issue>3</issue><spage>35204</spage><pages>35204-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Let be a finite dimensional von Neumann algebra and a von Neumann subalgebra of it. For states and on , let and be the corresponding states induced on . The data processing inequality implies that where is the relative entropy. Petz proved that there is equality if and only if , where is the Petz recovery map. We prove a quantitative version of Petz's theorem. In it simplest form, our bound is where is the relative modular operator. Since , this yields a bound that is independent of . We also prove an analogous result with a more complicated constant in which the roles of and are interchanged on the right. Quantum information theoretic inequalities are usually much harder to prove, or differ from, their classical counterparts because classical proofs often rely on conditioning argument that do not carry over to the quantum setting. In particular, quantum conditional expectations rarely preserve expectations-something that always happens in the classical setting. We also prove a simple theorem characterizing states and subalgebras for which conditional expectations do preserve expectation with respect to , illuminating the quantum obstacle to the existence of nicely behaved conditional expectations and the origins the Petz recovery map.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/ab5ab7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5108-1531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2020-01, Vol.53 (3), p.35204 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_ab5ab7 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Accardi-Cecchini coarse graining map data processing inequality monotonicity inequality Petz recovery map quantum relative entropy |
title | Recovery map stability for the data processing inequality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20map%20stability%20for%20the%20data%20processing%20inequality&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Carlen,%20Eric%20A&rft.date=2020-01-24&rft.volume=53&rft.issue=3&rft.spage=35204&rft.pages=35204-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/ab5ab7&rft_dat=%3Ciop_cross%3Eaab5ab7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |