Time since maximum of Brownian motion and asymmetric Lévy processes

Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-07, Vol.51 (27), p.275001
Hauptverfasser: Martin, R J, Kearney, M J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 27
container_start_page 275001
container_title Journal of physics. A, Mathematical and theoretical
container_volume 51
creator Martin, R J
Kearney, M J
description Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T  −  t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.
doi_str_mv 10.1088/1751-8121/aac191
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aac191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaac191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKt3j3kA185skzZ71PoXCl7qOWQnWUhpNiXZqn0kn8MXs0ulB0FPMwy_b-D7MXaJcI2g1AinEguFJY6MIazwiA0Op-PDjuNTdpbzEkAKqMoBu1v44Hj2LTkezIcPm8Bjw29TfG-9aXmInY8tN63lJm9DcF3yxOdfn29bvk6RXM4un7OTxqyyu_iZQ_b6cL-YPRXzl8fn2c28oFJBV6CyCgAE0ZRoIoVELMGKiZtKKUhYIxTUsqxsXYtaUbPLlhYdWmnJVhWMhwz2fynFnJNr9Dr5YNJWI-i-Bd1r6l5Z71vYIZNfCPnO9E5dMn71H3i1B31c62XcpHZn9nf8G5CdcDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time since maximum of Brownian motion and asymmetric Lévy processes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Martin, R J ; Kearney, M J</creator><creatorcontrib>Martin, R J ; Kearney, M J</creatorcontrib><description>Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T  −  t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aac191</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Brownian motion ; extreme statistics ; Lévy process ; Wiener-Hopf</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2018-07, Vol.51 (27), p.275001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</citedby><cites>FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</cites><orcidid>0000-0002-9272-1360 ; 0000-0002-9085-8638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aac191/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Martin, R J</creatorcontrib><creatorcontrib>Kearney, M J</creatorcontrib><title>Time since maximum of Brownian motion and asymmetric Lévy processes</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T  −  t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.</description><subject>Brownian motion</subject><subject>extreme statistics</subject><subject>Lévy process</subject><subject>Wiener-Hopf</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKt3j3kA185skzZ71PoXCl7qOWQnWUhpNiXZqn0kn8MXs0ulB0FPMwy_b-D7MXaJcI2g1AinEguFJY6MIazwiA0Op-PDjuNTdpbzEkAKqMoBu1v44Hj2LTkezIcPm8Bjw29TfG-9aXmInY8tN63lJm9DcF3yxOdfn29bvk6RXM4un7OTxqyyu_iZQ_b6cL-YPRXzl8fn2c28oFJBV6CyCgAE0ZRoIoVELMGKiZtKKUhYIxTUsqxsXYtaUbPLlhYdWmnJVhWMhwz2fynFnJNr9Dr5YNJWI-i-Bd1r6l5Z71vYIZNfCPnO9E5dMn71H3i1B31c62XcpHZn9nf8G5CdcDQ</recordid><startdate>20180706</startdate><enddate>20180706</enddate><creator>Martin, R J</creator><creator>Kearney, M J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9272-1360</orcidid><orcidid>https://orcid.org/0000-0002-9085-8638</orcidid></search><sort><creationdate>20180706</creationdate><title>Time since maximum of Brownian motion and asymmetric Lévy processes</title><author>Martin, R J ; Kearney, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brownian motion</topic><topic>extreme statistics</topic><topic>Lévy process</topic><topic>Wiener-Hopf</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, R J</creatorcontrib><creatorcontrib>Kearney, M J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, R J</au><au>Kearney, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time since maximum of Brownian motion and asymmetric Lévy processes</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2018-07-06</date><risdate>2018</risdate><volume>51</volume><issue>27</issue><spage>275001</spage><pages>275001-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T  −  t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aac191</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9272-1360</orcidid><orcidid>https://orcid.org/0000-0002-9085-8638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2018-07, Vol.51 (27), p.275001
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_aac191
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Brownian motion
extreme statistics
Lévy process
Wiener-Hopf
title Time since maximum of Brownian motion and asymmetric Lévy processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20since%20maximum%20of%20Brownian%20motion%20and%20asymmetric%20L%C3%A9vy%20processes&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Martin,%20R%20J&rft.date=2018-07-06&rft.volume=51&rft.issue=27&rft.spage=275001&rft.pages=275001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aac191&rft_dat=%3Ciop_cross%3Eaaac191%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true