Time since maximum of Brownian motion and asymmetric Lévy processes
Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density funct...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2018-07, Vol.51 (27), p.275001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 27 |
container_start_page | 275001 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 51 |
creator | Martin, R J Kearney, M J |
description | Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T − t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift. |
doi_str_mv | 10.1088/1751-8121/aac191 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aac191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaac191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKt3j3kA185skzZ71PoXCl7qOWQnWUhpNiXZqn0kn8MXs0ulB0FPMwy_b-D7MXaJcI2g1AinEguFJY6MIazwiA0Op-PDjuNTdpbzEkAKqMoBu1v44Hj2LTkezIcPm8Bjw29TfG-9aXmInY8tN63lJm9DcF3yxOdfn29bvk6RXM4un7OTxqyyu_iZQ_b6cL-YPRXzl8fn2c28oFJBV6CyCgAE0ZRoIoVELMGKiZtKKUhYIxTUsqxsXYtaUbPLlhYdWmnJVhWMhwz2fynFnJNr9Dr5YNJWI-i-Bd1r6l5Z71vYIZNfCPnO9E5dMn71H3i1B31c62XcpHZn9nf8G5CdcDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time since maximum of Brownian motion and asymmetric Lévy processes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Martin, R J ; Kearney, M J</creator><creatorcontrib>Martin, R J ; Kearney, M J</creatorcontrib><description>Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T − t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aac191</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Brownian motion ; extreme statistics ; Lévy process ; Wiener-Hopf</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2018-07, Vol.51 (27), p.275001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</citedby><cites>FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</cites><orcidid>0000-0002-9272-1360 ; 0000-0002-9085-8638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aac191/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Martin, R J</creatorcontrib><creatorcontrib>Kearney, M J</creatorcontrib><title>Time since maximum of Brownian motion and asymmetric Lévy processes</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T − t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.</description><subject>Brownian motion</subject><subject>extreme statistics</subject><subject>Lévy process</subject><subject>Wiener-Hopf</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKt3j3kA185skzZ71PoXCl7qOWQnWUhpNiXZqn0kn8MXs0ulB0FPMwy_b-D7MXaJcI2g1AinEguFJY6MIazwiA0Op-PDjuNTdpbzEkAKqMoBu1v44Hj2LTkezIcPm8Bjw29TfG-9aXmInY8tN63lJm9DcF3yxOdfn29bvk6RXM4un7OTxqyyu_iZQ_b6cL-YPRXzl8fn2c28oFJBV6CyCgAE0ZRoIoVELMGKiZtKKUhYIxTUsqxsXYtaUbPLlhYdWmnJVhWMhwz2fynFnJNr9Dr5YNJWI-i-Bd1r6l5Z71vYIZNfCPnO9E5dMn71H3i1B31c62XcpHZn9nf8G5CdcDQ</recordid><startdate>20180706</startdate><enddate>20180706</enddate><creator>Martin, R J</creator><creator>Kearney, M J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9272-1360</orcidid><orcidid>https://orcid.org/0000-0002-9085-8638</orcidid></search><sort><creationdate>20180706</creationdate><title>Time since maximum of Brownian motion and asymmetric Lévy processes</title><author>Martin, R J ; Kearney, M J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-18d80004cc7cc65451120d46e7554c4da480b529dbb4b8cf0002d1e1d5dcd9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brownian motion</topic><topic>extreme statistics</topic><topic>Lévy process</topic><topic>Wiener-Hopf</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, R J</creatorcontrib><creatorcontrib>Kearney, M J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, R J</au><au>Kearney, M J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time since maximum of Brownian motion and asymmetric Lévy processes</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2018-07-06</date><risdate>2018</risdate><volume>51</volume><issue>27</issue><spage>275001</spage><pages>275001-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T − t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aac191</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9272-1360</orcidid><orcidid>https://orcid.org/0000-0002-9085-8638</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2018-07, Vol.51 (27), p.275001 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_aac191 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Brownian motion extreme statistics Lévy process Wiener-Hopf |
title | Time since maximum of Brownian motion and asymmetric Lévy processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20since%20maximum%20of%20Brownian%20motion%20and%20asymmetric%20L%C3%A9vy%20processes&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Martin,%20R%20J&rft.date=2018-07-06&rft.volume=51&rft.issue=27&rft.spage=275001&rft.pages=275001-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aac191&rft_dat=%3Ciop_cross%3Eaaac191%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |