The quest for solvable multistate Landau-Zener models

Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-05, Vol.50 (25), p.255203
Hauptverfasser: Sinitsyn, Nikolai A, Chernyak, Vladimir Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page 255203
container_title Journal of physics. A, Mathematical and theoretical
container_volume 50
creator Sinitsyn, Nikolai A
Chernyak, Vladimir Y
description Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.
doi_str_mv 10.1088/1751-8121/aa6800
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa6800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa6800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM0bMhJ7tOnZGVPElRWIpC4vl2hc1VRIX20HivydRUDemO929d7rfI-SWwgMFpVZUCporyujKmEIBnJHFaXR-6im_JFcxHgDEGkq2IGK7x-xrwJiy2ocs-vbb7FrMuqFNTUwmYVaZ3pkh_8QeQ9Z5h228Jhe1aSPe_NUl-Xh-2m5e8-r95W3zWOWWg0w5OskLVju2E4YjAwnMoKqZA0bHt1QhpK2FKnjJmFNFqSTFcSNRUHQFrPmS3M13fUyNjrZJaPfW9z3apCkfmSQbRTCLbPAxBqz1MTSdCT-agp6y0RO8noLQczaj5X62NP6oD34I_Ujxv_wXTotiag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The quest for solvable multistate Landau-Zener models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sinitsyn, Nikolai A ; Chernyak, Vladimir Y</creator><creatorcontrib>Sinitsyn, Nikolai A ; Chernyak, Vladimir Y ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa6800</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>driven matter ; integrability ; Landau-Zener ; material science ; mathematics ; MATHEMATICS AND COMPUTING ; matrix product ansatz ; nonadiabatic transitions ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; quantum control ; quantum integrability</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (25), p.255203</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</citedby><cites>FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</cites><orcidid>0000000207460400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aa6800/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1375172$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinitsyn, Nikolai A</creatorcontrib><creatorcontrib>Chernyak, Vladimir Y</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>The quest for solvable multistate Landau-Zener models</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.</description><subject>driven matter</subject><subject>integrability</subject><subject>Landau-Zener</subject><subject>material science</subject><subject>mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>matrix product ansatz</subject><subject>nonadiabatic transitions</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>quantum control</subject><subject>quantum integrability</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM0bMhJ7tOnZGVPElRWIpC4vl2hc1VRIX20HivydRUDemO929d7rfI-SWwgMFpVZUCporyujKmEIBnJHFaXR-6im_JFcxHgDEGkq2IGK7x-xrwJiy2ocs-vbb7FrMuqFNTUwmYVaZ3pkh_8QeQ9Z5h228Jhe1aSPe_NUl-Xh-2m5e8-r95W3zWOWWg0w5OskLVju2E4YjAwnMoKqZA0bHt1QhpK2FKnjJmFNFqSTFcSNRUHQFrPmS3M13fUyNjrZJaPfW9z3apCkfmSQbRTCLbPAxBqz1MTSdCT-agp6y0RO8noLQczaj5X62NP6oD34I_Ujxv_wXTotiag</recordid><startdate>20170524</startdate><enddate>20170524</enddate><creator>Sinitsyn, Nikolai A</creator><creator>Chernyak, Vladimir Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000207460400</orcidid></search><sort><creationdate>20170524</creationdate><title>The quest for solvable multistate Landau-Zener models</title><author>Sinitsyn, Nikolai A ; Chernyak, Vladimir Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>driven matter</topic><topic>integrability</topic><topic>Landau-Zener</topic><topic>material science</topic><topic>mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>matrix product ansatz</topic><topic>nonadiabatic transitions</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>quantum control</topic><topic>quantum integrability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitsyn, Nikolai A</creatorcontrib><creatorcontrib>Chernyak, Vladimir Y</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitsyn, Nikolai A</au><au>Chernyak, Vladimir Y</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The quest for solvable multistate Landau-Zener models</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-05-24</date><risdate>2017</risdate><volume>50</volume><issue>25</issue><spage>255203</spage><pages>255203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa6800</doi><tpages>34</tpages><orcidid>https://orcid.org/0000000207460400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (25), p.255203
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_aa6800
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects driven matter
integrability
Landau-Zener
material science
mathematics
MATHEMATICS AND COMPUTING
matrix product ansatz
nonadiabatic transitions
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
quantum control
quantum integrability
title The quest for solvable multistate Landau-Zener models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20quest%20for%20solvable%20multistate%20Landau-Zener%20models&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Sinitsyn,%20Nikolai%20A&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2017-05-24&rft.volume=50&rft.issue=25&rft.spage=255203&rft.pages=255203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa6800&rft_dat=%3Ciop_osti_%3Eaaa6800%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true