The quest for solvable multistate Landau-Zener models
Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that s...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-05, Vol.50 (25), p.255203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | 255203 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 50 |
creator | Sinitsyn, Nikolai A Chernyak, Vladimir Y |
description | Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing. |
doi_str_mv | 10.1088/1751-8121/aa6800 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa6800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa6800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM0bMhJ7tOnZGVPElRWIpC4vl2hc1VRIX20HivydRUDemO929d7rfI-SWwgMFpVZUCporyujKmEIBnJHFaXR-6im_JFcxHgDEGkq2IGK7x-xrwJiy2ocs-vbb7FrMuqFNTUwmYVaZ3pkh_8QeQ9Z5h228Jhe1aSPe_NUl-Xh-2m5e8-r95W3zWOWWg0w5OskLVju2E4YjAwnMoKqZA0bHt1QhpK2FKnjJmFNFqSTFcSNRUHQFrPmS3M13fUyNjrZJaPfW9z3apCkfmSQbRTCLbPAxBqz1MTSdCT-agp6y0RO8noLQczaj5X62NP6oD34I_Ujxv_wXTotiag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The quest for solvable multistate Landau-Zener models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sinitsyn, Nikolai A ; Chernyak, Vladimir Y</creator><creatorcontrib>Sinitsyn, Nikolai A ; Chernyak, Vladimir Y ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa6800</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>driven matter ; integrability ; Landau-Zener ; material science ; mathematics ; MATHEMATICS AND COMPUTING ; matrix product ansatz ; nonadiabatic transitions ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; quantum control ; quantum integrability</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (25), p.255203</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</citedby><cites>FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</cites><orcidid>0000000207460400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aa6800/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1375172$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinitsyn, Nikolai A</creatorcontrib><creatorcontrib>Chernyak, Vladimir Y</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>The quest for solvable multistate Landau-Zener models</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.</description><subject>driven matter</subject><subject>integrability</subject><subject>Landau-Zener</subject><subject>material science</subject><subject>mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>matrix product ansatz</subject><subject>nonadiabatic transitions</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>quantum control</subject><subject>quantum integrability</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM0bMhJ7tOnZGVPElRWIpC4vl2hc1VRIX20HivydRUDemO929d7rfI-SWwgMFpVZUCporyujKmEIBnJHFaXR-6im_JFcxHgDEGkq2IGK7x-xrwJiy2ocs-vbb7FrMuqFNTUwmYVaZ3pkh_8QeQ9Z5h228Jhe1aSPe_NUl-Xh-2m5e8-r95W3zWOWWg0w5OskLVju2E4YjAwnMoKqZA0bHt1QhpK2FKnjJmFNFqSTFcSNRUHQFrPmS3M13fUyNjrZJaPfW9z3apCkfmSQbRTCLbPAxBqz1MTSdCT-agp6y0RO8noLQczaj5X62NP6oD34I_Ujxv_wXTotiag</recordid><startdate>20170524</startdate><enddate>20170524</enddate><creator>Sinitsyn, Nikolai A</creator><creator>Chernyak, Vladimir Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000207460400</orcidid></search><sort><creationdate>20170524</creationdate><title>The quest for solvable multistate Landau-Zener models</title><author>Sinitsyn, Nikolai A ; Chernyak, Vladimir Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ed7362fd2b5a3e20702ae8f2d0211218657cf5863922d869871e2117e51ed6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>driven matter</topic><topic>integrability</topic><topic>Landau-Zener</topic><topic>material science</topic><topic>mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>matrix product ansatz</topic><topic>nonadiabatic transitions</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>quantum control</topic><topic>quantum integrability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitsyn, Nikolai A</creatorcontrib><creatorcontrib>Chernyak, Vladimir Y</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitsyn, Nikolai A</au><au>Chernyak, Vladimir Y</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The quest for solvable multistate Landau-Zener models</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-05-24</date><risdate>2017</risdate><volume>50</volume><issue>25</issue><spage>255203</spage><pages>255203-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed [1]. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. In addition, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa6800</doi><tpages>34</tpages><orcidid>https://orcid.org/0000000207460400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2017-05, Vol.50 (25), p.255203 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_aa6800 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | driven matter integrability Landau-Zener material science mathematics MATHEMATICS AND COMPUTING matrix product ansatz nonadiabatic transitions PHYSICS OF ELEMENTARY PARTICLES AND FIELDS quantum control quantum integrability |
title | The quest for solvable multistate Landau-Zener models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20quest%20for%20solvable%20multistate%20Landau-Zener%20models&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Sinitsyn,%20Nikolai%20A&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2017-05-24&rft.volume=50&rft.issue=25&rft.spage=255203&rft.pages=255203-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa6800&rft_dat=%3Ciop_osti_%3Eaaa6800%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |