Joint statistics of strongly correlated neurons via dimensionality reduction

The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-06, Vol.50 (25), p.254002
Hauptverfasser: Deniz, Ta k n, Rotter, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page 254002
container_title Journal of physics. A, Mathematical and theoretical
container_volume 50
creator Deniz, Ta k n
Rotter, Stefan
description The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.
doi_str_mv 10.1088/1751-8121/aa677e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa677e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa677e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e45d0128e328bb61bb18ceb45a8356e0429b3e9256d10c917357a6e683edb33d3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrd495ge4Ni_Z7GaPUtQqBS96Dvl4lZTtpiRZof_eLZXePL03w5vHzBByD-wRmFILaCVUCjgsjGnaFi_I7ExdnncQ1-Qm5y1jsmYdn5H1ewxDobmYEnIJLtO4mVCKw3d_oC6mhL0p6OmA40Rm-hMM9WGHQw5xMH0oB5rQj65M8JZcbUyf8e5vzsnXy_PnclWtP17flk_rygnOS4W19Ay4QsGVtQ1YC8qhraVRQjbIat5ZgR2XjQfmOmiFbE2DjRLorRBezAk7_XUp5pxwo_cp7Ew6aGD62IY-xtXH6PrUxiR5OElC3OttHNPkPf9__gtjpmIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint statistics of strongly correlated neurons via dimensionality reduction</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Deniz, Ta k n ; Rotter, Stefan</creator><creatorcontrib>Deniz, Ta k n ; Rotter, Stefan</creatorcontrib><description>The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa677e</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>correlated jump equations ; Markov process ; singular value decomposition ; strongly correlated neuronal dynamics</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-06, Vol.50 (25), p.254002</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e45d0128e328bb61bb18ceb45a8356e0429b3e9256d10c917357a6e683edb33d3</citedby><cites>FETCH-LOGICAL-c322t-e45d0128e328bb61bb18ceb45a8356e0429b3e9256d10c917357a6e683edb33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aa677e/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Deniz, Ta k n</creatorcontrib><creatorcontrib>Rotter, Stefan</creatorcontrib><title>Joint statistics of strongly correlated neurons via dimensionality reduction</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.</description><subject>correlated jump equations</subject><subject>Markov process</subject><subject>singular value decomposition</subject><subject>strongly correlated neuronal dynamics</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UE1LAzEUDKJgrd495ge4Ni_Z7GaPUtQqBS96Dvl4lZTtpiRZof_eLZXePL03w5vHzBByD-wRmFILaCVUCjgsjGnaFi_I7ExdnncQ1-Qm5y1jsmYdn5H1ewxDobmYEnIJLtO4mVCKw3d_oC6mhL0p6OmA40Rm-hMM9WGHQw5xMH0oB5rQj65M8JZcbUyf8e5vzsnXy_PnclWtP17flk_rygnOS4W19Ay4QsGVtQ1YC8qhraVRQjbIat5ZgR2XjQfmOmiFbE2DjRLorRBezAk7_XUp5pxwo_cp7Ew6aGD62IY-xtXH6PrUxiR5OElC3OttHNPkPf9__gtjpmIE</recordid><startdate>20170623</startdate><enddate>20170623</enddate><creator>Deniz, Ta k n</creator><creator>Rotter, Stefan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170623</creationdate><title>Joint statistics of strongly correlated neurons via dimensionality reduction</title><author>Deniz, Ta k n ; Rotter, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e45d0128e328bb61bb18ceb45a8356e0429b3e9256d10c917357a6e683edb33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>correlated jump equations</topic><topic>Markov process</topic><topic>singular value decomposition</topic><topic>strongly correlated neuronal dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deniz, Ta k n</creatorcontrib><creatorcontrib>Rotter, Stefan</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deniz, Ta k n</au><au>Rotter, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint statistics of strongly correlated neurons via dimensionality reduction</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-06-23</date><risdate>2017</risdate><volume>50</volume><issue>25</issue><spage>254002</spage><pages>254002-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa677e</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2017-06, Vol.50 (25), p.254002
issn 1751-8113
1751-8121
language eng
recordid cdi_iop_journals_10_1088_1751_8121_aa677e
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects correlated jump equations
Markov process
singular value decomposition
strongly correlated neuronal dynamics
title Joint statistics of strongly correlated neurons via dimensionality reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20statistics%20of%20strongly%20correlated%20neurons%20via%20dimensionality%20reduction&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Deniz,%20Ta%20k%20n&rft.date=2017-06-23&rft.volume=50&rft.issue=25&rft.spage=254002&rft.pages=254002-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa677e&rft_dat=%3Ciop_cross%3Eaaa677e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true