A probabilistic angle on one-loop scalar integrals
Recasting the N-point one-loop scalar integral as a probabilistic problem allows the derivation of integral recurrence relations, as well as exact analytical expressions in the most common cases. expansions are derived by writing a formula that relates an N-point function in decimal dimensions to an...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-06, Vol.50 (22), p.225202 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 225202 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 50 |
creator | Benhaddou, Kamel |
description | Recasting the N-point one-loop scalar integral as a probabilistic problem allows the derivation of integral recurrence relations, as well as exact analytical expressions in the most common cases. expansions are derived by writing a formula that relates an N-point function in decimal dimensions to an N-point function in integer dimensions. As an example, we give relations for the massive five-point function in n=4−2ϵ and n=6−2ϵ dimensions. The reduction of tensor integrals of rank two with N = 5 is achieved showing the method's potential. No hypergeometric functions are involved. Results are expressed as integrals of arcsine functions, whose analytical continuation is well known. |
doi_str_mv | 10.1088/1751-8121/aa6779 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1751_8121_aa6779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>aaa6779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-ef4064b7e66e8c46b005205c2238bc594f75a09ed178d2b62cf9f30a58c162363</originalsourceid><addsrcrecordid>eNp1j01LAzEQhoMoWKt3j_sDXDtJNl_HUvyCghc9hyRNSsq6WZL14L83y0pvwsA7DPPOOw9C9xgeMUi5wYLhVmKCN8ZwIdQFWp1Hl-ce02t0U8oJgHWgyAqRbTPmZI2NfSxTdI0Zjr1v0lDLt31KY1Oc6U1u4jD5YzZ9uUVXoYq_-9M1-nx--ti9tvv3l7fddt86QunU-tAB76zwnHvpOm5rJgHmCKHSOqa6IJgB5Q9YyAOxnLigAgXDpMOcUE7XCJa7LqdSsg96zPHL5B-NQc_MeobSM6BemKvlYbHENOpT-s5DffD_9V9nClYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A probabilistic angle on one-loop scalar integrals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Benhaddou, Kamel</creator><creatorcontrib>Benhaddou, Kamel</creatorcontrib><description>Recasting the N-point one-loop scalar integral as a probabilistic problem allows the derivation of integral recurrence relations, as well as exact analytical expressions in the most common cases. expansions are derived by writing a formula that relates an N-point function in decimal dimensions to an N-point function in integer dimensions. As an example, we give relations for the massive five-point function in n=4−2ϵ and n=6−2ϵ dimensions. The reduction of tensor integrals of rank two with N = 5 is achieved showing the method's potential. No hypergeometric functions are involved. Results are expressed as integrals of arcsine functions, whose analytical continuation is well known.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8121/aa6779</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>expansion ; Feynman diagrams ; Fourier transform ; one-loop scalar integral ; probability ; tensor integral</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2017-06, Vol.50 (22), p.225202</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-ef4064b7e66e8c46b005205c2238bc594f75a09ed178d2b62cf9f30a58c162363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8121/aa6779/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Benhaddou, Kamel</creatorcontrib><title>A probabilistic angle on one-loop scalar integrals</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>Recasting the N-point one-loop scalar integral as a probabilistic problem allows the derivation of integral recurrence relations, as well as exact analytical expressions in the most common cases. expansions are derived by writing a formula that relates an N-point function in decimal dimensions to an N-point function in integer dimensions. As an example, we give relations for the massive five-point function in n=4−2ϵ and n=6−2ϵ dimensions. The reduction of tensor integrals of rank two with N = 5 is achieved showing the method's potential. No hypergeometric functions are involved. Results are expressed as integrals of arcsine functions, whose analytical continuation is well known.</description><subject>expansion</subject><subject>Feynman diagrams</subject><subject>Fourier transform</subject><subject>one-loop scalar integral</subject><subject>probability</subject><subject>tensor integral</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEQhoMoWKt3j_sDXDtJNl_HUvyCghc9hyRNSsq6WZL14L83y0pvwsA7DPPOOw9C9xgeMUi5wYLhVmKCN8ZwIdQFWp1Hl-ce02t0U8oJgHWgyAqRbTPmZI2NfSxTdI0Zjr1v0lDLt31KY1Oc6U1u4jD5YzZ9uUVXoYq_-9M1-nx--ti9tvv3l7fddt86QunU-tAB76zwnHvpOm5rJgHmCKHSOqa6IJgB5Q9YyAOxnLigAgXDpMOcUE7XCJa7LqdSsg96zPHL5B-NQc_MeobSM6BemKvlYbHENOpT-s5DffD_9V9nClYo</recordid><startdate>20170602</startdate><enddate>20170602</enddate><creator>Benhaddou, Kamel</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170602</creationdate><title>A probabilistic angle on one-loop scalar integrals</title><author>Benhaddou, Kamel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-ef4064b7e66e8c46b005205c2238bc594f75a09ed178d2b62cf9f30a58c162363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>expansion</topic><topic>Feynman diagrams</topic><topic>Fourier transform</topic><topic>one-loop scalar integral</topic><topic>probability</topic><topic>tensor integral</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benhaddou, Kamel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benhaddou, Kamel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic angle on one-loop scalar integrals</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2017-06-02</date><risdate>2017</risdate><volume>50</volume><issue>22</issue><spage>225202</spage><pages>225202-</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>Recasting the N-point one-loop scalar integral as a probabilistic problem allows the derivation of integral recurrence relations, as well as exact analytical expressions in the most common cases. expansions are derived by writing a formula that relates an N-point function in decimal dimensions to an N-point function in integer dimensions. As an example, we give relations for the massive five-point function in n=4−2ϵ and n=6−2ϵ dimensions. The reduction of tensor integrals of rank two with N = 5 is achieved showing the method's potential. No hypergeometric functions are involved. Results are expressed as integrals of arcsine functions, whose analytical continuation is well known.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8121/aa6779</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2017-06, Vol.50 (22), p.225202 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_iop_journals_10_1088_1751_8121_aa6779 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | expansion Feynman diagrams Fourier transform one-loop scalar integral probability tensor integral |
title | A probabilistic angle on one-loop scalar integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20angle%20on%20one-loop%20scalar%20integrals&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Benhaddou,%20Kamel&rft.date=2017-06-02&rft.volume=50&rft.issue=22&rft.spage=225202&rft.pages=225202-&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8121/aa6779&rft_dat=%3Ciop_cross%3Eaaa6779%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |