Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology

China’s nationwide monitoring network initiated in 2013 has witnessed continuous increases of urban summertime surface ozone to 2019 by about 5% year −1 , among the fastest ozone trends in the recent decade reported in the Tropospheric ozone assessment report. Here we report that surface ozone level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2021-12, Vol.16 (12), p.124069
Hauptverfasser: Yin, Hao, Lu, Xiao, Sun, Youwen, Li, Ke, Gao, Meng, Zheng, Bo, Liu, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 124069
container_title Environmental research letters
container_volume 16
creator Yin, Hao
Lu, Xiao
Sun, Youwen
Li, Ke
Gao, Meng
Zheng, Bo
Liu, Cheng
description China’s nationwide monitoring network initiated in 2013 has witnessed continuous increases of urban summertime surface ozone to 2019 by about 5% year −1 , among the fastest ozone trends in the recent decade reported in the Tropospheric ozone assessment report. Here we report that surface ozone levels averaged over cities in eastern China cities decrease by 5.5 ppbv in May–August 2020 compared to the 2019 levels, representing an unprecedented ozone reduction since 2013. We combine the high-resolution GEOS-Chem chemical model and the eXtreme Gradient Boosting (XGBoost) machine learning model to quantify the drivers of this reduction. We estimate that changes in anthropogenic emissions alone decrease ozone by 3.2 (2.9–3.6) ppbv (57% of the total 5.5 ppbv reduction) averaged over cities in eastern China and by 2.5 ∼ 3.2 ppbv in the three key city clusters for ozone mitigation. These reductions appear to be driven by decreases in anthropogenic emissions of both nitrogen oxides (NO x ) and volatile organic compounds, likely reflecting the stringent emission control measures implemented by The Chinese Ministry of Environmental and Ecology in summer 2020, as supported by observed decline in tropospheric formaldehyde (HCHO) and nitrogen dioxides (NO 2 ) from satellite and by bottom-up emission estimates. Comparable to the emission-driven ozone reduction, the wetter and cooler weather conditions in 2020 decrease ozone by 2.3 (1.9–2.6) ppbv (43%). Our analyses indicate that the current emission control strategies can be effective for ozone mitigation in China yet tracking future ozone changes is essential for further evaluation. Our study also reveals important potential to combine the mechanism-based, state-of-art atmospheric chemical models with machine learning model to improve the attribution of ozone drivers.
doi_str_mv 10.1088/1748-9326/ac3e22
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1748_9326_ac3e22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5563debada2e44ec83c69f4582065d4b</doaj_id><sourcerecordid>2612141062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-aed2d66538aba1fcdfe18249de5e83b722801323eaa5e4b0b4f92e567eb9362a3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRcBzduwy4cWHP5N2ppTQ-BgbcOOtwK7nVk6YqKZO00P4T_61pS8ZZiBDIuTffPQk5Xfea0StGjblmW2k2veD6GpxAzp90Fw-tp4_08-5FKQdKlVRbc9H9vItLRoceY0VPPLopRCQhknKcZ8w1zNhkHsEhST9SO0vfMROEUjFHsrsPEc44p5wSl-YFMgzTiUCtOQzH2gokNRGI9T6nJe0xBkdwDqWEFElGf3S1qdIIT2asmHKa0v70sns2wlTw1Z_9srv7-OHr7vPm9sunm937242Tsq8bQM-91koYGICNzo_IDJe9R4VGDFvODWWCCwRQKAc6yLHnqPQWh15oDuKyu1l9fYKDXXKYIZ9sgmB_N1LeW2jf4Ca0SmnhcQAPHKVEZ4TT_SiV4VQrL4fm9Wb1WnL6dsRS7SEdc2zPt1wzziSjmjeKrpTLqZSM48OtjNpzmPaclj2nZdcw28i7dSSk5a_nf_C3_8AxT5Zpy3hbkureLn4UvwBQCLFz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612141062</pqid></control><display><type>article</type><title>Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content(OpenAccess)</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Yin, Hao ; Lu, Xiao ; Sun, Youwen ; Li, Ke ; Gao, Meng ; Zheng, Bo ; Liu, Cheng</creator><creatorcontrib>Yin, Hao ; Lu, Xiao ; Sun, Youwen ; Li, Ke ; Gao, Meng ; Zheng, Bo ; Liu, Cheng</creatorcontrib><description>China’s nationwide monitoring network initiated in 2013 has witnessed continuous increases of urban summertime surface ozone to 2019 by about 5% year −1 , among the fastest ozone trends in the recent decade reported in the Tropospheric ozone assessment report. Here we report that surface ozone levels averaged over cities in eastern China cities decrease by 5.5 ppbv in May–August 2020 compared to the 2019 levels, representing an unprecedented ozone reduction since 2013. We combine the high-resolution GEOS-Chem chemical model and the eXtreme Gradient Boosting (XGBoost) machine learning model to quantify the drivers of this reduction. We estimate that changes in anthropogenic emissions alone decrease ozone by 3.2 (2.9–3.6) ppbv (57% of the total 5.5 ppbv reduction) averaged over cities in eastern China and by 2.5 ∼ 3.2 ppbv in the three key city clusters for ozone mitigation. These reductions appear to be driven by decreases in anthropogenic emissions of both nitrogen oxides (NO x ) and volatile organic compounds, likely reflecting the stringent emission control measures implemented by The Chinese Ministry of Environmental and Ecology in summer 2020, as supported by observed decline in tropospheric formaldehyde (HCHO) and nitrogen dioxides (NO 2 ) from satellite and by bottom-up emission estimates. Comparable to the emission-driven ozone reduction, the wetter and cooler weather conditions in 2020 decrease ozone by 2.3 (1.9–2.6) ppbv (43%). Our analyses indicate that the current emission control strategies can be effective for ozone mitigation in China yet tracking future ozone changes is essential for further evaluation. Our study also reveals important potential to combine the mechanism-based, state-of-art atmospheric chemical models with machine learning model to improve the attribution of ozone drivers.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ac3e22</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>anthropogenic emission reductions ; Anthropogenic factors ; Atmospheric models ; Cities ; Emission analysis ; Emission measurements ; Emissions control ; GEOS-Chem-XGBoost ; Learning algorithms ; Machine learning ; Meteorology ; Nitrogen dioxide ; Nitrogen oxides ; Organic compounds ; Ozone ; ozone changes ; ozone mitigation ; Photochemicals ; Summer ; Troposphere ; VOCs ; Volatile organic compounds ; Weather</subject><ispartof>Environmental research letters, 2021-12, Vol.16 (12), p.124069</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-aed2d66538aba1fcdfe18249de5e83b722801323eaa5e4b0b4f92e567eb9362a3</citedby><cites>FETCH-LOGICAL-c449t-aed2d66538aba1fcdfe18249de5e83b722801323eaa5e4b0b4f92e567eb9362a3</cites><orcidid>0000-0003-3126-3252 ; 0000-0001-8344-3445 ; 0000-0002-4399-5752 ; 0000-0002-5989-0912 ; 0000-0002-3759-9219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ac3e22/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Lu, Xiao</creatorcontrib><creatorcontrib>Sun, Youwen</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Gao, Meng</creatorcontrib><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><title>Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>China’s nationwide monitoring network initiated in 2013 has witnessed continuous increases of urban summertime surface ozone to 2019 by about 5% year −1 , among the fastest ozone trends in the recent decade reported in the Tropospheric ozone assessment report. Here we report that surface ozone levels averaged over cities in eastern China cities decrease by 5.5 ppbv in May–August 2020 compared to the 2019 levels, representing an unprecedented ozone reduction since 2013. We combine the high-resolution GEOS-Chem chemical model and the eXtreme Gradient Boosting (XGBoost) machine learning model to quantify the drivers of this reduction. We estimate that changes in anthropogenic emissions alone decrease ozone by 3.2 (2.9–3.6) ppbv (57% of the total 5.5 ppbv reduction) averaged over cities in eastern China and by 2.5 ∼ 3.2 ppbv in the three key city clusters for ozone mitigation. These reductions appear to be driven by decreases in anthropogenic emissions of both nitrogen oxides (NO x ) and volatile organic compounds, likely reflecting the stringent emission control measures implemented by The Chinese Ministry of Environmental and Ecology in summer 2020, as supported by observed decline in tropospheric formaldehyde (HCHO) and nitrogen dioxides (NO 2 ) from satellite and by bottom-up emission estimates. Comparable to the emission-driven ozone reduction, the wetter and cooler weather conditions in 2020 decrease ozone by 2.3 (1.9–2.6) ppbv (43%). Our analyses indicate that the current emission control strategies can be effective for ozone mitigation in China yet tracking future ozone changes is essential for further evaluation. Our study also reveals important potential to combine the mechanism-based, state-of-art atmospheric chemical models with machine learning model to improve the attribution of ozone drivers.</description><subject>anthropogenic emission reductions</subject><subject>Anthropogenic factors</subject><subject>Atmospheric models</subject><subject>Cities</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Emissions control</subject><subject>GEOS-Chem-XGBoost</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen oxides</subject><subject>Organic compounds</subject><subject>Ozone</subject><subject>ozone changes</subject><subject>ozone mitigation</subject><subject>Photochemicals</subject><subject>Summer</subject><subject>Troposphere</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Weather</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUuLFDEUhQtRcBzduwy4cWHP5N2ppTQ-BgbcOOtwK7nVk6YqKZO00P4T_61pS8ZZiBDIuTffPQk5Xfea0StGjblmW2k2veD6GpxAzp90Fw-tp4_08-5FKQdKlVRbc9H9vItLRoceY0VPPLopRCQhknKcZ8w1zNhkHsEhST9SO0vfMROEUjFHsrsPEc44p5wSl-YFMgzTiUCtOQzH2gokNRGI9T6nJe0xBkdwDqWEFElGf3S1qdIIT2asmHKa0v70sns2wlTw1Z_9srv7-OHr7vPm9sunm937242Tsq8bQM-91koYGICNzo_IDJe9R4VGDFvODWWCCwRQKAc6yLHnqPQWh15oDuKyu1l9fYKDXXKYIZ9sgmB_N1LeW2jf4Ca0SmnhcQAPHKVEZ4TT_SiV4VQrL4fm9Wb1WnL6dsRS7SEdc2zPt1wzziSjmjeKrpTLqZSM48OtjNpzmPaclj2nZdcw28i7dSSk5a_nf_C3_8AxT5Zpy3hbkureLn4UvwBQCLFz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yin, Hao</creator><creator>Lu, Xiao</creator><creator>Sun, Youwen</creator><creator>Li, Ke</creator><creator>Gao, Meng</creator><creator>Zheng, Bo</creator><creator>Liu, Cheng</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3126-3252</orcidid><orcidid>https://orcid.org/0000-0001-8344-3445</orcidid><orcidid>https://orcid.org/0000-0002-4399-5752</orcidid><orcidid>https://orcid.org/0000-0002-5989-0912</orcidid><orcidid>https://orcid.org/0000-0002-3759-9219</orcidid></search><sort><creationdate>20211201</creationdate><title>Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology</title><author>Yin, Hao ; Lu, Xiao ; Sun, Youwen ; Li, Ke ; Gao, Meng ; Zheng, Bo ; Liu, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-aed2d66538aba1fcdfe18249de5e83b722801323eaa5e4b0b4f92e567eb9362a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anthropogenic emission reductions</topic><topic>Anthropogenic factors</topic><topic>Atmospheric models</topic><topic>Cities</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Emissions control</topic><topic>GEOS-Chem-XGBoost</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen oxides</topic><topic>Organic compounds</topic><topic>Ozone</topic><topic>ozone changes</topic><topic>ozone mitigation</topic><topic>Photochemicals</topic><topic>Summer</topic><topic>Troposphere</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Lu, Xiao</creatorcontrib><creatorcontrib>Sun, Youwen</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Gao, Meng</creatorcontrib><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><collection>IOP Publishing Free Content(OpenAccess)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Hao</au><au>Lu, Xiao</au><au>Sun, Youwen</au><au>Li, Ke</au><au>Gao, Meng</au><au>Zheng, Bo</au><au>Liu, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>12</issue><spage>124069</spage><pages>124069-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>China’s nationwide monitoring network initiated in 2013 has witnessed continuous increases of urban summertime surface ozone to 2019 by about 5% year −1 , among the fastest ozone trends in the recent decade reported in the Tropospheric ozone assessment report. Here we report that surface ozone levels averaged over cities in eastern China cities decrease by 5.5 ppbv in May–August 2020 compared to the 2019 levels, representing an unprecedented ozone reduction since 2013. We combine the high-resolution GEOS-Chem chemical model and the eXtreme Gradient Boosting (XGBoost) machine learning model to quantify the drivers of this reduction. We estimate that changes in anthropogenic emissions alone decrease ozone by 3.2 (2.9–3.6) ppbv (57% of the total 5.5 ppbv reduction) averaged over cities in eastern China and by 2.5 ∼ 3.2 ppbv in the three key city clusters for ozone mitigation. These reductions appear to be driven by decreases in anthropogenic emissions of both nitrogen oxides (NO x ) and volatile organic compounds, likely reflecting the stringent emission control measures implemented by The Chinese Ministry of Environmental and Ecology in summer 2020, as supported by observed decline in tropospheric formaldehyde (HCHO) and nitrogen dioxides (NO 2 ) from satellite and by bottom-up emission estimates. Comparable to the emission-driven ozone reduction, the wetter and cooler weather conditions in 2020 decrease ozone by 2.3 (1.9–2.6) ppbv (43%). Our analyses indicate that the current emission control strategies can be effective for ozone mitigation in China yet tracking future ozone changes is essential for further evaluation. Our study also reveals important potential to combine the mechanism-based, state-of-art atmospheric chemical models with machine learning model to improve the attribution of ozone drivers.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ac3e22</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3126-3252</orcidid><orcidid>https://orcid.org/0000-0001-8344-3445</orcidid><orcidid>https://orcid.org/0000-0002-4399-5752</orcidid><orcidid>https://orcid.org/0000-0002-5989-0912</orcidid><orcidid>https://orcid.org/0000-0002-3759-9219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2021-12, Vol.16 (12), p.124069
issn 1748-9326
1748-9326
language eng
recordid cdi_iop_journals_10_1088_1748_9326_ac3e22
source Institute of Physics IOPscience extra; IOP Publishing Free Content(OpenAccess); DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects anthropogenic emission reductions
Anthropogenic factors
Atmospheric models
Cities
Emission analysis
Emission measurements
Emissions control
GEOS-Chem-XGBoost
Learning algorithms
Machine learning
Meteorology
Nitrogen dioxide
Nitrogen oxides
Organic compounds
Ozone
ozone changes
ozone mitigation
Photochemicals
Summer
Troposphere
VOCs
Volatile organic compounds
Weather
title Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unprecedented%20decline%20in%20summertime%20surface%20ozone%20over%20eastern%20China%20in%202020%20comparably%20attributable%20to%20anthropogenic%20emission%20reductions%20and%20meteorology&rft.jtitle=Environmental%20research%20letters&rft.au=Yin,%20Hao&rft.date=2021-12-01&rft.volume=16&rft.issue=12&rft.spage=124069&rft.pages=124069-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ac3e22&rft_dat=%3Cproquest_iop_j%3E2612141062%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612141062&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5563debada2e44ec83c69f4582065d4b&rfr_iscdi=true