Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change

Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global war...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2021-10, Vol.16 (10), p.104023
Hauptverfasser: Klein, Cornelia, Jackson, Lawrence S, Parker, Douglas J, Marsham, John H, Taylor, Christopher M, Rowell, David P, Guichard, Françoise, Vischel, Théo, Famien, Adjoua Moïse, Diedhiou, Arona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 104023
container_title Environmental research letters
container_volume 16
creator Klein, Cornelia
Jackson, Lawrence S
Parker, Douglas J
Marsham, John H
Taylor, Christopher M
Rowell, David P
Guichard, Françoise
Vischel, Théo
Famien, Adjoua Moïse
Diedhiou, Arona
description Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for 2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the +0–60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.
doi_str_mv 10.1088/1748-9326/ac26f1
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1748_9326_ac26f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_07b7d68aea42455eab015895a99631fc</doaj_id><sourcerecordid>2579132916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d7264121e9f2fb2081535bb2edcf8a98a7dfd353462ba76cea8e975eaa0eaf193</originalsourceid><addsrcrecordid>eNp1kc-L1DAUx4souK7ePQa8KFg3v5sel0HdgRE96Dm8Jq8zHdqmpplRj_ufb2plVdBTkpfP-_B436J4zugbRo25YpU0ZS24vgLHdcseFBf3pYd_3B8XT-b5SKmSqjIXxe0mDE03duOebD5sPxEPCci3Lh0IkIj7LozQExfGM7qUH-WEcehSWvgheOwJjJ6EZsZ4hgWYSQpkiuGYeYLfU8QBSYRubKHvyWn0GInruwESEneAcY9Pi0f5b8Znv87L4su7t583N-Xu4_vt5npXOmlEKn3FtWScYd3ytuHUMCVU03D0rjVQG6h864USUvMGKu0QDNaVQgCK0LJaXBbb1esDHO0U8wzxhw3Q2Z-FEPcWYupcj5ZWTeW1AQTJpcqOhjJlagV1rQVrXXa9Wl0H6P9S3Vzv7FKjQgqqjTyzzL5Y2byVryeckz2GU8xrnS1XVc0Er5nOFF0pF8M8R2zvtYzaJWC7JGiXBO0acG55ubZ0YfrtxNhbptcuSbmwk28z-vof6H_Nd-L-tWM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579132916</pqid></control><display><type>article</type><title>Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Klein, Cornelia ; Jackson, Lawrence S ; Parker, Douglas J ; Marsham, John H ; Taylor, Christopher M ; Rowell, David P ; Guichard, Françoise ; Vischel, Théo ; Famien, Adjoua Moïse ; Diedhiou, Arona</creator><creatorcontrib>Klein, Cornelia ; Jackson, Lawrence S ; Parker, Douglas J ; Marsham, John H ; Taylor, Christopher M ; Rowell, David P ; Guichard, Françoise ; Vischel, Théo ; Famien, Adjoua Moïse ; Diedhiou, Arona</creatorcontrib><description>Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for 2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the +0–60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ac26f1</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Atmospheric models ; atmospheric moisture scaling ; Climate change ; Climate models ; climate projection ; CMIP ; Convection ; convection-permitting ; Decision making ; Earth Sciences ; extreme rainfall ; Geophysics ; Global warming ; Hydrology ; mesoscale convective system ; Physics ; Rainfall ; Reservoirs ; Sciences of the Universe ; Sensitivity ; Storms ; Uncertainty ; West Africa</subject><ispartof>Environmental research letters, 2021-10, Vol.16 (10), p.104023</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d7264121e9f2fb2081535bb2edcf8a98a7dfd353462ba76cea8e975eaa0eaf193</citedby><cites>FETCH-LOGICAL-c483t-d7264121e9f2fb2081535bb2edcf8a98a7dfd353462ba76cea8e975eaa0eaf193</cites><orcidid>0000-0002-0120-3198 ; 0000-0001-8143-2777 ; 0000-0003-3841-1027 ; 0000-0003-2335-8198 ; 0000-0002-4551-7033 ; 0000-0001-6686-0458 ; 0000-0003-4230-4953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ac26f1/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38845,38867,53815,53842</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03430684$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Cornelia</creatorcontrib><creatorcontrib>Jackson, Lawrence S</creatorcontrib><creatorcontrib>Parker, Douglas J</creatorcontrib><creatorcontrib>Marsham, John H</creatorcontrib><creatorcontrib>Taylor, Christopher M</creatorcontrib><creatorcontrib>Rowell, David P</creatorcontrib><creatorcontrib>Guichard, Françoise</creatorcontrib><creatorcontrib>Vischel, Théo</creatorcontrib><creatorcontrib>Famien, Adjoua Moïse</creatorcontrib><creatorcontrib>Diedhiou, Arona</creatorcontrib><title>Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for 2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the +0–60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.</description><subject>Atmospheric models</subject><subject>atmospheric moisture scaling</subject><subject>Climate change</subject><subject>Climate models</subject><subject>climate projection</subject><subject>CMIP</subject><subject>Convection</subject><subject>convection-permitting</subject><subject>Decision making</subject><subject>Earth Sciences</subject><subject>extreme rainfall</subject><subject>Geophysics</subject><subject>Global warming</subject><subject>Hydrology</subject><subject>mesoscale convective system</subject><subject>Physics</subject><subject>Rainfall</subject><subject>Reservoirs</subject><subject>Sciences of the Universe</subject><subject>Sensitivity</subject><subject>Storms</subject><subject>Uncertainty</subject><subject>West Africa</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc-L1DAUx4souK7ePQa8KFg3v5sel0HdgRE96Dm8Jq8zHdqmpplRj_ufb2plVdBTkpfP-_B436J4zugbRo25YpU0ZS24vgLHdcseFBf3pYd_3B8XT-b5SKmSqjIXxe0mDE03duOebD5sPxEPCci3Lh0IkIj7LozQExfGM7qUH-WEcehSWvgheOwJjJ6EZsZ4hgWYSQpkiuGYeYLfU8QBSYRubKHvyWn0GInruwESEneAcY9Pi0f5b8Znv87L4su7t583N-Xu4_vt5npXOmlEKn3FtWScYd3ytuHUMCVU03D0rjVQG6h864USUvMGKu0QDNaVQgCK0LJaXBbb1esDHO0U8wzxhw3Q2Z-FEPcWYupcj5ZWTeW1AQTJpcqOhjJlagV1rQVrXXa9Wl0H6P9S3Vzv7FKjQgqqjTyzzL5Y2byVryeckz2GU8xrnS1XVc0Er5nOFF0pF8M8R2zvtYzaJWC7JGiXBO0acG55ubZ0YfrtxNhbptcuSbmwk28z-vof6H_Nd-L-tWM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Klein, Cornelia</creator><creator>Jackson, Lawrence S</creator><creator>Parker, Douglas J</creator><creator>Marsham, John H</creator><creator>Taylor, Christopher M</creator><creator>Rowell, David P</creator><creator>Guichard, Françoise</creator><creator>Vischel, Théo</creator><creator>Famien, Adjoua Moïse</creator><creator>Diedhiou, Arona</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0120-3198</orcidid><orcidid>https://orcid.org/0000-0001-8143-2777</orcidid><orcidid>https://orcid.org/0000-0003-3841-1027</orcidid><orcidid>https://orcid.org/0000-0003-2335-8198</orcidid><orcidid>https://orcid.org/0000-0002-4551-7033</orcidid><orcidid>https://orcid.org/0000-0001-6686-0458</orcidid><orcidid>https://orcid.org/0000-0003-4230-4953</orcidid></search><sort><creationdate>20211001</creationdate><title>Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change</title><author>Klein, Cornelia ; Jackson, Lawrence S ; Parker, Douglas J ; Marsham, John H ; Taylor, Christopher M ; Rowell, David P ; Guichard, Françoise ; Vischel, Théo ; Famien, Adjoua Moïse ; Diedhiou, Arona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d7264121e9f2fb2081535bb2edcf8a98a7dfd353462ba76cea8e975eaa0eaf193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric models</topic><topic>atmospheric moisture scaling</topic><topic>Climate change</topic><topic>Climate models</topic><topic>climate projection</topic><topic>CMIP</topic><topic>Convection</topic><topic>convection-permitting</topic><topic>Decision making</topic><topic>Earth Sciences</topic><topic>extreme rainfall</topic><topic>Geophysics</topic><topic>Global warming</topic><topic>Hydrology</topic><topic>mesoscale convective system</topic><topic>Physics</topic><topic>Rainfall</topic><topic>Reservoirs</topic><topic>Sciences of the Universe</topic><topic>Sensitivity</topic><topic>Storms</topic><topic>Uncertainty</topic><topic>West Africa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Cornelia</creatorcontrib><creatorcontrib>Jackson, Lawrence S</creatorcontrib><creatorcontrib>Parker, Douglas J</creatorcontrib><creatorcontrib>Marsham, John H</creatorcontrib><creatorcontrib>Taylor, Christopher M</creatorcontrib><creatorcontrib>Rowell, David P</creatorcontrib><creatorcontrib>Guichard, Françoise</creatorcontrib><creatorcontrib>Vischel, Théo</creatorcontrib><creatorcontrib>Famien, Adjoua Moïse</creatorcontrib><creatorcontrib>Diedhiou, Arona</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Cornelia</au><au>Jackson, Lawrence S</au><au>Parker, Douglas J</au><au>Marsham, John H</au><au>Taylor, Christopher M</au><au>Rowell, David P</au><au>Guichard, Françoise</au><au>Vischel, Théo</au><au>Famien, Adjoua Moïse</au><au>Diedhiou, Arona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>104023</spage><pages>104023-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Due to associated hydrological risks, there is an urgent need to provide plausible quantified changes in future extreme rainfall rates. Convection-permitting (CP) climate simulations represent a major advance in capturing extreme rainfall and its sensitivities to atmospheric changes under global warming. However, they are computationally costly, limiting uncertainty evaluation in ensembles and covered time periods. This is in contrast to the Climate Model Intercomparison Project (CMIP) 5 and 6 ensembles, which cannot capture relevant convective processes, but provide a range of plausible projections for atmospheric drivers of rainfall change. Here, we quantify the sensitivity of extreme rainfall within West African storms to changes in atmospheric rainfall drivers, using both observations and a CP projection representing a decade under the Representative Concentration Pathway 8.5 around 2100. We illustrate how these physical relationships can then be used to reconstruct better-informed extreme rainfall changes from CMIP, including for time periods not covered by the CP model. We find reconstructed hourly extreme rainfall over the Sahel increases across all CMIP models, with a plausible range of 37%–75% for 2070–2100 (mean 55%, and 18%–30% for 2030–2060). This is considerably higher than the +0–60% (mean +30%) we obtain from a traditional extreme rainfall metric based on raw daily CMIP rainfall, suggesting such analyses can underestimate extreme rainfall intensification. We conclude that process-based rainfall scaling is a useful approach for creating time-evolving rainfall projections in line with CP model behaviour, reconstructing important information for medium-term decision making. This approach also better enables the communication of uncertainties in extreme rainfall projections that reflect our current state of knowledge on its response to global warming, away from the limitations of coarse-scale climate models alone.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ac26f1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0120-3198</orcidid><orcidid>https://orcid.org/0000-0001-8143-2777</orcidid><orcidid>https://orcid.org/0000-0003-3841-1027</orcidid><orcidid>https://orcid.org/0000-0003-2335-8198</orcidid><orcidid>https://orcid.org/0000-0002-4551-7033</orcidid><orcidid>https://orcid.org/0000-0001-6686-0458</orcidid><orcidid>https://orcid.org/0000-0003-4230-4953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2021-10, Vol.16 (10), p.104023
issn 1748-9326
1748-9326
language eng
recordid cdi_iop_journals_10_1088_1748_9326_ac26f1
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Atmospheric models
atmospheric moisture scaling
Climate change
Climate models
climate projection
CMIP
Convection
convection-permitting
Decision making
Earth Sciences
extreme rainfall
Geophysics
Global warming
Hydrology
mesoscale convective system
Physics
Rainfall
Reservoirs
Sciences of the Universe
Sensitivity
Storms
Uncertainty
West Africa
title Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20CMIP%20data%20with%20a%20regional%20convection-permitting%20model%20and%20observations%20to%20project%20extreme%20rainfall%20under%20climate%20change&rft.jtitle=Environmental%20research%20letters&rft.au=Klein,%20Cornelia&rft.date=2021-10-01&rft.volume=16&rft.issue=10&rft.spage=104023&rft.pages=104023-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ac26f1&rft_dat=%3Cproquest_iop_j%3E2579132916%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579132916&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_07b7d68aea42455eab015895a99631fc&rfr_iscdi=true