Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator

We present a physically-based emulator approach to extending 21st century CMIP5 model simulations of global mean surface temperature (GMST) and global thermal expansion (TE) to 2300. A two-layer energy balance model that has been tuned to emulate the CO2 response of individual CMIP5 models is combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2018, Vol.13 (8), p.84003
Hauptverfasser: Palmer, Matthew D, Harris, Glen R, Gregory, Jonathan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 84003
container_title Environmental research letters
container_volume 13
creator Palmer, Matthew D
Harris, Glen R
Gregory, Jonathan M
description We present a physically-based emulator approach to extending 21st century CMIP5 model simulations of global mean surface temperature (GMST) and global thermal expansion (TE) to 2300. A two-layer energy balance model that has been tuned to emulate the CO2 response of individual CMIP5 models is combined with model-specific radiative forcings to generate an emulated ensemble to 2300 for RCP2.6, RCP4.5 and RCP8.5. Errors in the emulated time series are quantified using a subset of CMIP5 models with data available to 2300 and factored into the ensemble uncertainty. The resulting projections show good agreement with 21st century ensemble projections reported in IPCC AR5 and also compare favourably with individual CMIP5 model simulations post-2100. There is a tendency for the two-layer model simulations to overestimate both GMST rise and TE under RCP2.6, which is suggestive of a systematic error in the applied radiative forcings. Overall, the framework shows promise as a basis for extending process-based projections of global sea level rise beyond the 21st century time horizon that typifies CMIP5 simulations. The results also serve to illustrate the differing responses of GMST and Earth's energy imbalance (EEI) to reductions in greenhouse gas emissions. GMST responds relatively quickly to changes in emissions, leading to a negative trend post-2100 for RCP2.6, although temperature remains substantially elevated compared to present day at 2300. In contrast, EEI remains positive under all RCPs, and results in ongoing sea level rise from TE.
doi_str_mv 10.1088/1748-9326/aad2e4
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1748_9326_aad2e4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_faee6bb6841f41469911a0803cc7385b</doaj_id><sourcerecordid>2548934563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-893349649a030c779b9f140d08e55cee093ae6382a97936ec67ddc49ea97484b3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSNEJUrLnaMlroTasePYR7QqZaUiOLRna2JPdrNy4mA7qPsb-NMkBBUunDwevffNaF5RvGX0A6NK3bBGqFLzSt4AuArFi-LyufXyn_pV8TqlE6W1qBt1Wfy8fco4un48kN2X_beaTDGc0OY-jImEjhx8aMGTAWEkGYcJI-Q5IrFHGA9IYHQkIRCPP9CT2CckbkaSA8lHjMPixKcJxrTgyJzWKUCm4zn1Frw_ly0kdASH2UMO8bq46MAnfPPnvSoeP90-7D6X91_v9ruP96WtK5ZLpTkXWgoNlFPbNLrVHRPUUYV1bRGp5oCSqwp0o7lEKxvnrNC4_IUSLb8q9hvXBTiZKfYDxLMJ0JvfjRAPBmLurUfTAaJsW6kE6wQTUmvGgCrKrW24qlfWu4213O37jCmbU5jjuKxvqlosq4pa8kVFN5WNIaWI3fNURs0an1nzMWs-ZotvsbzfLH2Y_jL_K_8Fv22c2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548934563</pqid></control><display><type>article</type><title>Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Palmer, Matthew D ; Harris, Glen R ; Gregory, Jonathan M</creator><creatorcontrib>Palmer, Matthew D ; Harris, Glen R ; Gregory, Jonathan M</creatorcontrib><description>We present a physically-based emulator approach to extending 21st century CMIP5 model simulations of global mean surface temperature (GMST) and global thermal expansion (TE) to 2300. A two-layer energy balance model that has been tuned to emulate the CO2 response of individual CMIP5 models is combined with model-specific radiative forcings to generate an emulated ensemble to 2300 for RCP2.6, RCP4.5 and RCP8.5. Errors in the emulated time series are quantified using a subset of CMIP5 models with data available to 2300 and factored into the ensemble uncertainty. The resulting projections show good agreement with 21st century ensemble projections reported in IPCC AR5 and also compare favourably with individual CMIP5 model simulations post-2100. There is a tendency for the two-layer model simulations to overestimate both GMST rise and TE under RCP2.6, which is suggestive of a systematic error in the applied radiative forcings. Overall, the framework shows promise as a basis for extending process-based projections of global sea level rise beyond the 21st century time horizon that typifies CMIP5 simulations. The results also serve to illustrate the differing responses of GMST and Earth's energy imbalance (EEI) to reductions in greenhouse gas emissions. GMST responds relatively quickly to changes in emissions, leading to a negative trend post-2100 for RCP2.6, although temperature remains substantially elevated compared to present day at 2300. In contrast, EEI remains positive under all RCPs, and results in ongoing sea level rise from TE.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/aad2e4</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>21st century ; Carbon dioxide ; Climate models ; climate projections ; CMIP5 ; Earth's energy imbalance ; Emissions ; Emulators ; Energy balance ; global surface temperature ; Global temperatures ; global thermal expansion ; Greenhouse gases ; Intergovernmental Panel on Climate Change ; Radiative forcing ; Sea level ; Sea level rise ; Simulation ; Surface temperature ; Systematic errors ; Thermal expansion ; two layer model</subject><ispartof>Environmental research letters, 2018, Vol.13 (8), p.84003</ispartof><rights>2018 The Author(s). Published by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-893349649a030c779b9f140d08e55cee093ae6382a97936ec67ddc49ea97484b3</citedby><cites>FETCH-LOGICAL-c521t-893349649a030c779b9f140d08e55cee093ae6382a97936ec67ddc49ea97484b3</cites><orcidid>0000-0001-7422-198X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/aad2e4/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,4009,27902,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Palmer, Matthew D</creatorcontrib><creatorcontrib>Harris, Glen R</creatorcontrib><creatorcontrib>Gregory, Jonathan M</creatorcontrib><title>Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>We present a physically-based emulator approach to extending 21st century CMIP5 model simulations of global mean surface temperature (GMST) and global thermal expansion (TE) to 2300. A two-layer energy balance model that has been tuned to emulate the CO2 response of individual CMIP5 models is combined with model-specific radiative forcings to generate an emulated ensemble to 2300 for RCP2.6, RCP4.5 and RCP8.5. Errors in the emulated time series are quantified using a subset of CMIP5 models with data available to 2300 and factored into the ensemble uncertainty. The resulting projections show good agreement with 21st century ensemble projections reported in IPCC AR5 and also compare favourably with individual CMIP5 model simulations post-2100. There is a tendency for the two-layer model simulations to overestimate both GMST rise and TE under RCP2.6, which is suggestive of a systematic error in the applied radiative forcings. Overall, the framework shows promise as a basis for extending process-based projections of global sea level rise beyond the 21st century time horizon that typifies CMIP5 simulations. The results also serve to illustrate the differing responses of GMST and Earth's energy imbalance (EEI) to reductions in greenhouse gas emissions. GMST responds relatively quickly to changes in emissions, leading to a negative trend post-2100 for RCP2.6, although temperature remains substantially elevated compared to present day at 2300. In contrast, EEI remains positive under all RCPs, and results in ongoing sea level rise from TE.</description><subject>21st century</subject><subject>Carbon dioxide</subject><subject>Climate models</subject><subject>climate projections</subject><subject>CMIP5</subject><subject>Earth's energy imbalance</subject><subject>Emissions</subject><subject>Emulators</subject><subject>Energy balance</subject><subject>global surface temperature</subject><subject>Global temperatures</subject><subject>global thermal expansion</subject><subject>Greenhouse gases</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>Radiative forcing</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Systematic errors</subject><subject>Thermal expansion</subject><subject>two layer model</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1kUFv1DAQhSNEJUrLnaMlroTasePYR7QqZaUiOLRna2JPdrNy4mA7qPsb-NMkBBUunDwevffNaF5RvGX0A6NK3bBGqFLzSt4AuArFi-LyufXyn_pV8TqlE6W1qBt1Wfy8fco4un48kN2X_beaTDGc0OY-jImEjhx8aMGTAWEkGYcJI-Q5IrFHGA9IYHQkIRCPP9CT2CckbkaSA8lHjMPixKcJxrTgyJzWKUCm4zn1Frw_ly0kdASH2UMO8bq46MAnfPPnvSoeP90-7D6X91_v9ruP96WtK5ZLpTkXWgoNlFPbNLrVHRPUUYV1bRGp5oCSqwp0o7lEKxvnrNC4_IUSLb8q9hvXBTiZKfYDxLMJ0JvfjRAPBmLurUfTAaJsW6kE6wQTUmvGgCrKrW24qlfWu4213O37jCmbU5jjuKxvqlosq4pa8kVFN5WNIaWI3fNURs0an1nzMWs-ZotvsbzfLH2Y_jL_K_8Fv22c2A</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Palmer, Matthew D</creator><creator>Harris, Glen R</creator><creator>Gregory, Jonathan M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7422-198X</orcidid></search><sort><creationdate>2018</creationdate><title>Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator</title><author>Palmer, Matthew D ; Harris, Glen R ; Gregory, Jonathan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-893349649a030c779b9f140d08e55cee093ae6382a97936ec67ddc49ea97484b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>21st century</topic><topic>Carbon dioxide</topic><topic>Climate models</topic><topic>climate projections</topic><topic>CMIP5</topic><topic>Earth's energy imbalance</topic><topic>Emissions</topic><topic>Emulators</topic><topic>Energy balance</topic><topic>global surface temperature</topic><topic>Global temperatures</topic><topic>global thermal expansion</topic><topic>Greenhouse gases</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>Radiative forcing</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Systematic errors</topic><topic>Thermal expansion</topic><topic>two layer model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmer, Matthew D</creatorcontrib><creatorcontrib>Harris, Glen R</creatorcontrib><creatorcontrib>Gregory, Jonathan M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmer, Matthew D</au><au>Harris, Glen R</au><au>Gregory, Jonathan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2018</date><risdate>2018</risdate><volume>13</volume><issue>8</issue><spage>84003</spage><pages>84003-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>We present a physically-based emulator approach to extending 21st century CMIP5 model simulations of global mean surface temperature (GMST) and global thermal expansion (TE) to 2300. A two-layer energy balance model that has been tuned to emulate the CO2 response of individual CMIP5 models is combined with model-specific radiative forcings to generate an emulated ensemble to 2300 for RCP2.6, RCP4.5 and RCP8.5. Errors in the emulated time series are quantified using a subset of CMIP5 models with data available to 2300 and factored into the ensemble uncertainty. The resulting projections show good agreement with 21st century ensemble projections reported in IPCC AR5 and also compare favourably with individual CMIP5 model simulations post-2100. There is a tendency for the two-layer model simulations to overestimate both GMST rise and TE under RCP2.6, which is suggestive of a systematic error in the applied radiative forcings. Overall, the framework shows promise as a basis for extending process-based projections of global sea level rise beyond the 21st century time horizon that typifies CMIP5 simulations. The results also serve to illustrate the differing responses of GMST and Earth's energy imbalance (EEI) to reductions in greenhouse gas emissions. GMST responds relatively quickly to changes in emissions, leading to a negative trend post-2100 for RCP2.6, although temperature remains substantially elevated compared to present day at 2300. In contrast, EEI remains positive under all RCPs, and results in ongoing sea level rise from TE.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/aad2e4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7422-198X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2018, Vol.13 (8), p.84003
issn 1748-9326
1748-9326
language eng
recordid cdi_iop_journals_10_1088_1748_9326_aad2e4
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects 21st century
Carbon dioxide
Climate models
climate projections
CMIP5
Earth's energy imbalance
Emissions
Emulators
Energy balance
global surface temperature
Global temperatures
global thermal expansion
Greenhouse gases
Intergovernmental Panel on Climate Change
Radiative forcing
Sea level
Sea level rise
Simulation
Surface temperature
Systematic errors
Thermal expansion
two layer model
title Extending CMIP5 projections of global mean temperature change and sea level rise due to thermal expansion using a physically-based emulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20CMIP5%20projections%20of%20global%20mean%20temperature%20change%20and%20sea%20level%20rise%20due%20to%20thermal%20expansion%20using%20a%20physically-based%20emulator&rft.jtitle=Environmental%20research%20letters&rft.au=Palmer,%20Matthew%20D&rft.date=2018&rft.volume=13&rft.issue=8&rft.spage=84003&rft.pages=84003-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/aad2e4&rft_dat=%3Cproquest_iop_j%3E2548934563%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548934563&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_faee6bb6841f41469911a0803cc7385b&rfr_iscdi=true