A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity

Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2018-02, Vol.13 (2), p.25011
Hauptverfasser: Karlsen, Stein Rune, Anderson, Helen B, van der Wal, René, Hansen, Brage Bremset
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25011
container_title Environmental research letters
container_volume 13
creator Karlsen, Stein Rune
Anderson, Helen B
van der Wal, René
Hansen, Brage Bremset
description Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000−2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000−2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R2 = 0.51 and 0.44, respectively). The commonly used 'maximum NDVI' plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.
doi_str_mv 10.1088/1748-9326/aa9f75
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1748_9326_aa9f75</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_22f92a00fdc94bcda071afcc1f9de984</doaj_id><sourcerecordid>2549155411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-c57047f05943665cae80f56017d65e16a3701f8d4233742c60f1d1e352eaf5e3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRBIlNI7R0scuBBqO3acHKtCy0pVe6l6tab2eNerbBxsZ1F_hm_FIahwQJzsmXnvzRu9qnrH6CdGu-6cKdHVfcPbc4DeKfmiOnluvfzr_7p6k9KeUimk6k6qHxdkxO_k9vPDhhwQ0hyR5B1kEo4YTThgIhYykDRBTD4_ET8SM4TZ1mZBoCURtz6MiUyl8CYnAuM4w0COED3kMloo2xjm0daPkAoDU_YHyEU6OLLz2x2BaLI3ZBpgzEUo2LnUx7LubfXKwZDw7Pd7Wt1ffbm__Frf3F1vLi9uaiM6lWsjFRXKUdmLpm2lAeyoky1lyrYSWQuNosx1VvCmUYKbljpmGTaSIziJzWm1WWVtgL2eYrEXn3QAr381QtxqiMXhgJpz13Og1FnTi0djgSoGzhjmeot9J4rW-1Wr3PFtLrfqfZjjWNxrLkXPpBSMFRRdUSaGlCK6562M6iVQvSSml8T0GmihfFwpPkx_NP8D__APOMZBs0ZzTbmkjOnJuuYn1dixpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549155411</pqid></control><display><type>article</type><title>A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Karlsen, Stein Rune ; Anderson, Helen B ; van der Wal, René ; Hansen, Brage Bremset</creator><creatorcontrib>Karlsen, Stein Rune ; Anderson, Helen B ; van der Wal, René ; Hansen, Brage Bremset</creatorcontrib><description>Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000−2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000−2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R2 = 0.51 and 0.44, respectively). The commonly used 'maximum NDVI' plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/aa9f75</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Annual variations ; Archipelagoes ; Biomass ; Climatic conditions ; Cloud cover ; Clouds ; high arctic ; MODIS ; NDVI ; Normalized difference vegetative index ; Pixels ; Plant biomass ; Plant growth ; plant productivity ; Plants ; Polar environments ; Productivity ; Remote sensing ; Spring (season) ; svalbard ; variability</subject><ispartof>Environmental research letters, 2018-02, Vol.13 (2), p.25011</ispartof><rights>2018 The Author(s). Published by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-c57047f05943665cae80f56017d65e16a3701f8d4233742c60f1d1e352eaf5e3</citedby><cites>FETCH-LOGICAL-c487t-c57047f05943665cae80f56017d65e16a3701f8d4233742c60f1d1e352eaf5e3</cites><orcidid>0000-0002-9456-6990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/aa9f75/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Karlsen, Stein Rune</creatorcontrib><creatorcontrib>Anderson, Helen B</creatorcontrib><creatorcontrib>van der Wal, René</creatorcontrib><creatorcontrib>Hansen, Brage Bremset</creatorcontrib><title>A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000−2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000−2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R2 = 0.51 and 0.44, respectively). The commonly used 'maximum NDVI' plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.</description><subject>Annual variations</subject><subject>Archipelagoes</subject><subject>Biomass</subject><subject>Climatic conditions</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>high arctic</subject><subject>MODIS</subject><subject>NDVI</subject><subject>Normalized difference vegetative index</subject><subject>Pixels</subject><subject>Plant biomass</subject><subject>Plant growth</subject><subject>plant productivity</subject><subject>Plants</subject><subject>Polar environments</subject><subject>Productivity</subject><subject>Remote sensing</subject><subject>Spring (season)</subject><subject>svalbard</subject><subject>variability</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UcFu1DAQjRBIlNI7R0scuBBqO3acHKtCy0pVe6l6tab2eNerbBxsZ1F_hm_FIahwQJzsmXnvzRu9qnrH6CdGu-6cKdHVfcPbc4DeKfmiOnluvfzr_7p6k9KeUimk6k6qHxdkxO_k9vPDhhwQ0hyR5B1kEo4YTThgIhYykDRBTD4_ET8SM4TZ1mZBoCURtz6MiUyl8CYnAuM4w0COED3kMloo2xjm0daPkAoDU_YHyEU6OLLz2x2BaLI3ZBpgzEUo2LnUx7LubfXKwZDw7Pd7Wt1ffbm__Frf3F1vLi9uaiM6lWsjFRXKUdmLpm2lAeyoky1lyrYSWQuNosx1VvCmUYKbljpmGTaSIziJzWm1WWVtgL2eYrEXn3QAr381QtxqiMXhgJpz13Og1FnTi0djgSoGzhjmeot9J4rW-1Wr3PFtLrfqfZjjWNxrLkXPpBSMFRRdUSaGlCK6562M6iVQvSSml8T0GmihfFwpPkx_NP8D__APOMZBs0ZzTbmkjOnJuuYn1dixpQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Karlsen, Stein Rune</creator><creator>Anderson, Helen B</creator><creator>van der Wal, René</creator><creator>Hansen, Brage Bremset</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9456-6990</orcidid></search><sort><creationdate>20180201</creationdate><title>A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity</title><author>Karlsen, Stein Rune ; Anderson, Helen B ; van der Wal, René ; Hansen, Brage Bremset</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-c57047f05943665cae80f56017d65e16a3701f8d4233742c60f1d1e352eaf5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annual variations</topic><topic>Archipelagoes</topic><topic>Biomass</topic><topic>Climatic conditions</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>high arctic</topic><topic>MODIS</topic><topic>NDVI</topic><topic>Normalized difference vegetative index</topic><topic>Pixels</topic><topic>Plant biomass</topic><topic>Plant growth</topic><topic>plant productivity</topic><topic>Plants</topic><topic>Polar environments</topic><topic>Productivity</topic><topic>Remote sensing</topic><topic>Spring (season)</topic><topic>svalbard</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsen, Stein Rune</creatorcontrib><creatorcontrib>Anderson, Helen B</creatorcontrib><creatorcontrib>van der Wal, René</creatorcontrib><creatorcontrib>Hansen, Brage Bremset</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsen, Stein Rune</au><au>Anderson, Helen B</au><au>van der Wal, René</au><au>Hansen, Brage Bremset</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>25011</spage><pages>25011-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000−2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000−2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R2 = 0.51 and 0.44, respectively). The commonly used 'maximum NDVI' plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/aa9f75</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9456-6990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2018-02, Vol.13 (2), p.25011
issn 1748-9326
1748-9326
language eng
recordid cdi_iop_journals_10_1088_1748_9326_aa9f75
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Annual variations
Archipelagoes
Biomass
Climatic conditions
Cloud cover
Clouds
high arctic
MODIS
NDVI
Normalized difference vegetative index
Pixels
Plant biomass
Plant growth
plant productivity
Plants
Polar environments
Productivity
Remote sensing
Spring (season)
svalbard
variability
title A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20NDVI%20measure%20that%20overcomes%20data%20sparsity%20in%20cloud-covered%20regions%20predicts%20annual%20variation%20in%20ground-based%20estimates%20of%20high%20arctic%20plant%20productivity&rft.jtitle=Environmental%20research%20letters&rft.au=Karlsen,%20Stein%20Rune&rft.date=2018-02-01&rft.volume=13&rft.issue=2&rft.spage=25011&rft.pages=25011-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/aa9f75&rft_dat=%3Cproquest_iop_j%3E2549155411%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549155411&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_22f92a00fdc94bcda071afcc1f9de984&rfr_iscdi=true