Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform

A remarkable variety of organisms use metachronal coordination (i.e., numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinspiration & biomimetics 2024-11, Vol.19 (6), p.66002
Hauptverfasser: Peterman, David J, Byron, Margaret L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 66002
container_title Bioinspiration & biomimetics
container_volume 19
creator Peterman, David J
Byron, Margaret L
description A remarkable variety of organisms use metachronal coordination (i.e., numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.
doi_str_mv 10.1088/1748-3190/ad791c
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1748_3190_ad791c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102877866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-48e951d1a54ab60304fb11b64577adab2abc58177666ca982eba01b465c962573</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EoqWwMyGPDITaSfyREVXlQ6rEArP17DjUVRIH2xXqf0-qlm5M7-l0d9L9ELql5JESKedUlDIraEXmUIuKmjM0PUnnp1_mE3QV44YQVlYyv0STosoZk3k5Rc2yN752_ReOAyTnk-0GH6DFEHddZ1PYYddjCMk1zrhRN651gH9cWmPAJtneD2sfbOb6OLhgaxx9k7LgtU_O4KGF1PjQXaOLBtpob453hj6flx-L12z1_vK2eFplJqdVykppK0ZrCqwEzUlBykZTqnnJhIAadA7aMEmF4JwbGLdYDYTqkjNT8ZyJYobuD71D8N9bG5PqXDS2baG3fhtVQUkuhZCcj1ZysJrgYwy2UUNwHYSdokTt6ao9PrVHqQ50x8jdsX2rO1ufAn84R8PDweD8oDZ-G_px7P99vxyMhRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102877866</pqid></control><display><type>article</type><title>Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform</title><source>Institute of Physics Journals</source><creator>Peterman, David J ; Byron, Margaret L</creator><creatorcontrib>Peterman, David J ; Byron, Margaret L</creatorcontrib><description>A remarkable variety of organisms use metachronal coordination (i.e., numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.</description><identifier>ISSN: 1748-3182</identifier><identifier>ISSN: 1748-3190</identifier><identifier>EISSN: 1748-3190</identifier><identifier>DOI: 10.1088/1748-3190/ad791c</identifier><identifier>PMID: 39255824</identifier><identifier>CODEN: BBIICI</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>artificial cilia ; biomechanics ; ctenophore ; fluid mechanics ; intermediate Reynolds numbers ; magnetic elastomers ; soft robotics</subject><ispartof>Bioinspiration &amp; biomimetics, 2024-11, Vol.19 (6), p.66002</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-48e951d1a54ab60304fb11b64577adab2abc58177666ca982eba01b465c962573</cites><orcidid>0000-0001-8012-078X ; 0000-0002-6609-8544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-3190/ad791c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39255824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peterman, David J</creatorcontrib><creatorcontrib>Byron, Margaret L</creatorcontrib><title>Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform</title><title>Bioinspiration &amp; biomimetics</title><addtitle>BB</addtitle><addtitle>Bioinspir. Biomim</addtitle><description>A remarkable variety of organisms use metachronal coordination (i.e., numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.</description><subject>artificial cilia</subject><subject>biomechanics</subject><subject>ctenophore</subject><subject>fluid mechanics</subject><subject>intermediate Reynolds numbers</subject><subject>magnetic elastomers</subject><subject>soft robotics</subject><issn>1748-3182</issn><issn>1748-3190</issn><issn>1748-3190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kL1PwzAUxC0EoqWwMyGPDITaSfyREVXlQ6rEArP17DjUVRIH2xXqf0-qlm5M7-l0d9L9ELql5JESKedUlDIraEXmUIuKmjM0PUnnp1_mE3QV44YQVlYyv0STosoZk3k5Rc2yN752_ReOAyTnk-0GH6DFEHddZ1PYYddjCMk1zrhRN651gH9cWmPAJtneD2sfbOb6OLhgaxx9k7LgtU_O4KGF1PjQXaOLBtpob453hj6flx-L12z1_vK2eFplJqdVykppK0ZrCqwEzUlBykZTqnnJhIAadA7aMEmF4JwbGLdYDYTqkjNT8ZyJYobuD71D8N9bG5PqXDS2baG3fhtVQUkuhZCcj1ZysJrgYwy2UUNwHYSdokTt6ao9PrVHqQ50x8jdsX2rO1ufAn84R8PDweD8oDZ-G_px7P99vxyMhRo</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Peterman, David J</creator><creator>Byron, Margaret L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8012-078X</orcidid><orcidid>https://orcid.org/0000-0002-6609-8544</orcidid></search><sort><creationdate>20241101</creationdate><title>Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform</title><author>Peterman, David J ; Byron, Margaret L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-48e951d1a54ab60304fb11b64577adab2abc58177666ca982eba01b465c962573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial cilia</topic><topic>biomechanics</topic><topic>ctenophore</topic><topic>fluid mechanics</topic><topic>intermediate Reynolds numbers</topic><topic>magnetic elastomers</topic><topic>soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterman, David J</creatorcontrib><creatorcontrib>Byron, Margaret L</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinspiration &amp; biomimetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterman, David J</au><au>Byron, Margaret L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform</atitle><jtitle>Bioinspiration &amp; biomimetics</jtitle><stitle>BB</stitle><addtitle>Bioinspir. Biomim</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>66002</spage><pages>66002-</pages><issn>1748-3182</issn><issn>1748-3190</issn><eissn>1748-3190</eissn><coden>BBIICI</coden><abstract>A remarkable variety of organisms use metachronal coordination (i.e., numerous neighboring appendages beating sequentially with a fixed phase lag) to swim or pump fluid. This coordination strategy is used by microorganisms to break symmetry at small scales where viscous effects dominate and flow is time-reversible. Some larger organisms use this swimming strategy at intermediate scales, where viscosity and inertia both play important roles. However, the role of individual propulsor kinematics-especially across hydrodynamic scales-is not well-understood, though the details of propulsor motion can be crucial for the efficient generation of flow. To investigate this behavior, we developed a new soft robotic platform using magnetoactive silicone elastomers to mimic the metachronally coordinated propulsors found in swimming organisms. Furthermore, we present a method to passively encode spatially asymmetric beating patterns in our artificial propulsors. We investigated the kinematics and hydrodynamics of three propulsor types, with varying degrees of asymmetry, using Particle Image Velocimetry and high-speed videography. We find that asymmetric beating patterns can move considerably more fluid relative to symmetric beating at the same frequency and phase lag, and that asymmetry can be passively encoded into propulsors via the interplay between elastic and magnetic torques. Our results demonstrate that nuanced differences in propulsor kinematics can substantially impact fluid pumping performance. Our soft robotic platform also provides an avenue to explore metachronal coordination at the meso-scale, which in turn can inform the design of future bioinspired pumping devices and swimming robots.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39255824</pmid><doi>10.1088/1748-3190/ad791c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8012-078X</orcidid><orcidid>https://orcid.org/0000-0002-6609-8544</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3182
ispartof Bioinspiration & biomimetics, 2024-11, Vol.19 (6), p.66002
issn 1748-3182
1748-3190
1748-3190
language eng
recordid cdi_iop_journals_10_1088_1748_3190_ad791c
source Institute of Physics Journals
subjects artificial cilia
biomechanics
ctenophore
fluid mechanics
intermediate Reynolds numbers
magnetic elastomers
soft robotics
title Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20spatiotemporal%20asymmetry%20in%20artificial%20cilia%20with%20a%20ctenophore-inspired%20soft-robotic%20platform&rft.jtitle=Bioinspiration%20&%20biomimetics&rft.au=Peterman,%20David%20J&rft.date=2024-11-01&rft.volume=19&rft.issue=6&rft.spage=66002&rft.pages=66002-&rft.issn=1748-3182&rft.eissn=1748-3190&rft.coden=BBIICI&rft_id=info:doi/10.1088/1748-3190/ad791c&rft_dat=%3Cproquest_iop_j%3E3102877866%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102877866&rft_id=info:pmid/39255824&rfr_iscdi=true