Data-dependence of plateau phenomenon in learning with neural network-statistical mechanical analysisThis article is an updated version of: Yoshida Y and Okada M 2019 Data-Dependence of plateau phenomenon in learning with neural network-statistical mechanical analysis 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada vol 32 eds H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox and R Garnett pp 1722-30

The plateau phenomenon, wherein the loss value stops decreasing during the process of learning, has been reported by various researchers. The phenomenon was actively inspected in the 1990s and found to be due to the fundamental hierarchical structure of neural network models. Then, the phenomenon ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2020-12, Vol.2020 (12)
Hauptverfasser: Yoshida, Yuki, Okada, Masato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of statistical mechanics
container_volume 2020
creator Yoshida, Yuki
Okada, Masato
description The plateau phenomenon, wherein the loss value stops decreasing during the process of learning, has been reported by various researchers. The phenomenon was actively inspected in the 1990s and found to be due to the fundamental hierarchical structure of neural network models. Then, the phenomenon has been thought of as inevitable. However, the phenomenon seldom occurs in the context of recent deep learning. There is a gap between theory and reality. In this paper, using statistical mechanical formulation, we clarified the relationship between the plateau phenomenon and the statistical property of the data learned. It is shown that the data whose covariance has small and dispersed eigenvalues tend to make the plateau phenomenon inconspicuous.
doi_str_mv 10.1088/1742-5468/abc62f
format Article
fullrecord <record><control><sourceid>iop</sourceid><recordid>TN_cdi_iop_journals_10_1088_1742_5468_abc62f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jstatabc62f</sourcerecordid><originalsourceid>FETCH-iop_journals_10_1088_1742_5468_abc62f3</originalsourceid><addsrcrecordid>eNq1UttO3DAQDZUqlba893He2koJOM4Wtn2DhQWkclFBVDxFU3tCvDh2ZDvQ7R_xGVV_rJOl6heAZMtH4zkzZ0Yny96VYrMU0-lWuTORxafJ9nQLf6ht2bzI1v-HXmWvY1wIUUkxma6v_d7HhIWmnpwmpwh8A73FRDhA35LzHV8HxoElDM64G7g3qQVHQ0DLT7r34baICZOJySiOdaRadCuIDu0ymnjZmggY-N8SjNDB0GvuouGOQjTcwTdf4NrH1miEa07QcHaLjE9AivIzrGTuP7NMqKqgYeZdswmnj8xj1_jQMYurnwevKMax-MUyJuoifBjTjs8vViI_5nCFTvmBZ8phxlVZ_523UEkgHeEIvqO1qNqc4Vfkai1ZSznswh4tb8j-Mt3InIN-v2tV--eh2BtUDgcw9z9XK_kGhzwdpQR9D-WOlEUl3mYvG7SRNv69b7J8fnA5OyqM7-uFHwIPF-tS1KM16tEH9eiD-tEa1ZOkL8bF1lJIpkk-E1FWda-b6i_wyNeS</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-dependence of plateau phenomenon in learning with neural network-statistical mechanical analysisThis article is an updated version of: Yoshida Y and Okada M 2019 Data-Dependence of plateau phenomenon in learning with neural network-statistical mechanical analysis 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada vol 32 eds H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox and R Garnett pp 1722-30</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yoshida, Yuki ; Okada, Masato</creator><creatorcontrib>Yoshida, Yuki ; Okada, Masato</creatorcontrib><description>The plateau phenomenon, wherein the loss value stops decreasing during the process of learning, has been reported by various researchers. The phenomenon was actively inspected in the 1990s and found to be due to the fundamental hierarchical structure of neural network models. Then, the phenomenon has been thought of as inevitable. However, the phenomenon seldom occurs in the context of recent deep learning. There is a gap between theory and reality. In this paper, using statistical mechanical formulation, we clarified the relationship between the plateau phenomenon and the statistical property of the data learned. It is shown that the data whose covariance has small and dispersed eigenvalues tend to make the plateau phenomenon inconspicuous.</description><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/abc62f</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><subject>machine learning ; nonlinear dynamics ; online dynamics</subject><ispartof>Journal of statistical mechanics, 2020-12, Vol.2020 (12)</ispartof><rights>2020 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-5468/abc62f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Yoshida, Yuki</creatorcontrib><creatorcontrib>Okada, Masato</creatorcontrib><title>Data-dependence of plateau phenomenon in learning with neural network-statistical mechanical analysisThis article is an updated version of: Yoshida Y and Okada M 2019 Data-Dependence of plateau phenomenon in learning with neural network-statistical mechanical analysis 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada vol 32 eds H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox and R Garnett pp 1722-30</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>The plateau phenomenon, wherein the loss value stops decreasing during the process of learning, has been reported by various researchers. The phenomenon was actively inspected in the 1990s and found to be due to the fundamental hierarchical structure of neural network models. Then, the phenomenon has been thought of as inevitable. However, the phenomenon seldom occurs in the context of recent deep learning. There is a gap between theory and reality. In this paper, using statistical mechanical formulation, we clarified the relationship between the plateau phenomenon and the statistical property of the data learned. It is shown that the data whose covariance has small and dispersed eigenvalues tend to make the plateau phenomenon inconspicuous.</description><subject>machine learning</subject><subject>nonlinear dynamics</subject><subject>online dynamics</subject><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNq1UttO3DAQDZUqlba893He2koJOM4Wtn2DhQWkclFBVDxFU3tCvDh2ZDvQ7R_xGVV_rJOl6heAZMtH4zkzZ0Yny96VYrMU0-lWuTORxafJ9nQLf6ht2bzI1v-HXmWvY1wIUUkxma6v_d7HhIWmnpwmpwh8A73FRDhA35LzHV8HxoElDM64G7g3qQVHQ0DLT7r34baICZOJySiOdaRadCuIDu0ymnjZmggY-N8SjNDB0GvuouGOQjTcwTdf4NrH1miEa07QcHaLjE9AivIzrGTuP7NMqKqgYeZdswmnj8xj1_jQMYurnwevKMax-MUyJuoifBjTjs8vViI_5nCFTvmBZ8phxlVZ_523UEkgHeEIvqO1qNqc4Vfkai1ZSznswh4tb8j-Mt3InIN-v2tV--eh2BtUDgcw9z9XK_kGhzwdpQR9D-WOlEUl3mYvG7SRNv69b7J8fnA5OyqM7-uFHwIPF-tS1KM16tEH9eiD-tEa1ZOkL8bF1lJIpkk-E1FWda-b6i_wyNeS</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Yoshida, Yuki</creator><creator>Okada, Masato</creator><general>IOP Publishing and SISSA</general><scope/></search><sort><creationdate>20201221</creationdate><title>Data-dependence of plateau phenomenon in learning with neural network-statistical mechanical analysisThis article is an updated version of: Yoshida Y and Okada M 2019 Data-Dependence of plateau phenomenon in learning with neural network-statistical mechanical analysis 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada vol 32 eds H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox and R Garnett pp 1722-30</title><author>Yoshida, Yuki ; Okada, Masato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-iop_journals_10_1088_1742_5468_abc62f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>machine learning</topic><topic>nonlinear dynamics</topic><topic>online dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Yuki</creatorcontrib><creatorcontrib>Okada, Masato</creatorcontrib><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Yuki</au><au>Okada, Masato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-dependence of plateau phenomenon in learning with neural network-statistical mechanical analysisThis article is an updated version of: Yoshida Y and Okada M 2019 Data-Dependence of plateau phenomenon in learning with neural network-statistical mechanical analysis 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada vol 32 eds H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox and R Garnett pp 1722-30</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>2020</volume><issue>12</issue><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>The plateau phenomenon, wherein the loss value stops decreasing during the process of learning, has been reported by various researchers. The phenomenon was actively inspected in the 1990s and found to be due to the fundamental hierarchical structure of neural network models. Then, the phenomenon has been thought of as inevitable. However, the phenomenon seldom occurs in the context of recent deep learning. There is a gap between theory and reality. In this paper, using statistical mechanical formulation, we clarified the relationship between the plateau phenomenon and the statistical property of the data learned. It is shown that the data whose covariance has small and dispersed eigenvalues tend to make the plateau phenomenon inconspicuous.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/abc62f</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1742-5468
ispartof Journal of statistical mechanics, 2020-12, Vol.2020 (12)
issn 1742-5468
language eng
recordid cdi_iop_journals_10_1088_1742_5468_abc62f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects machine learning
nonlinear dynamics
online dynamics
title Data-dependence of plateau phenomenon in learning with neural network-statistical mechanical analysisThis article is an updated version of: Yoshida Y and Okada M 2019 Data-Dependence of plateau phenomenon in learning with neural network-statistical mechanical analysis 33rd Conf. Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada vol 32 eds H Wallach, H Larochelle, A Beygelzimer, F d'Alché-Buc, E Fox and R Garnett pp 1722-30
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-dependence%20of%20plateau%20phenomenon%20in%20learning%20with%20neural%20network-statistical%20mechanical%20analysisThis%20article%20is%20an%20updated%20version%20of:%20Yoshida%20Y%20and%20Okada%20M%202019%20Data-Dependence%20of%20plateau%20phenomenon%20in%20learning%20with%20neural%20network-statistical%20mechanical%20analysis%2033rd%20Conf.%20Neural%20Information%20Processing%20Systems%20(NeurIPS%202019),%20Vancouver,%20Canada%20vol%2032%20eds%20H%20Wallach,%20H%20Larochelle,%20A%20Beygelzimer,%20F%20d'Alch%C3%A9-Buc,%20E%20Fox%20and%20R%20Garnett%20pp%201722-30&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Yoshida,%20Yuki&rft.date=2020-12-21&rft.volume=2020&rft.issue=12&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/abc62f&rft_dat=%3Ciop%3Ejstatabc62f%3C/iop%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true