Neural network identification of the weakly coherent mode in I-mode discharge on EAST
The improved energy confinement mode (I-mode) is widely considered as an important operation regime for ITER. I-mode implementation depends on the specified basic plasma parameters and certain operation conditions, which are discovered by statistical plasma characteristics from a large number of I-m...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2024-01, Vol.64 (1), p.16035 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16035 |
container_title | Nuclear fusion |
container_volume | 64 |
creator | Yang, K.N. Liu, Z.X. Liu, J. Long, F.F. Xia, T.Y. Gao, X. Liu, Y.J. Li, J.Y. Li, P.C. Deng, C.C. Yin, X.Y. Li, H. Xie, J.L. Lan, T. Mao, W.Z. Liu, A.D. Zhou, C. Ding, W.X. Zhuang, G. Liu, W.D. |
description | The improved energy confinement mode (I-mode) is widely considered as an important operation regime for ITER. I-mode implementation depends on the specified basic plasma parameters and certain operation conditions, which are discovered by statistical plasma characteristics from a large number of I-mode discharges on a tokamak. The extraction process of I-mode plasma characteristics is complicated, time-consuming, and limited to the sampling rate of the measured signals. Experimental observation of the I-mode is accompanied by the appearance of a weakly coherent mode (WCM). However, it takes much time to accurately scan and quantify WCM characteristics when analyzing many I-mode discharges. Recently, a neural network identification method was developed as an I-mode detector to traverse a whole database as a replacement for manual identification. Two fully connected neural network models were trained with the spectrum of propagation velocity of density perturbation from Doppler backward scattering and the electron density measured by a polarimeter-interferometer system with the experimental advanced superconducting tokamak I-mode database. An accuracy of 98.30% in identifying WCMs in I-mode discharges is achieved with the WCM classification model. In addition, the regime classification model was also utilized to successfully distinguish between the low confinement mode (L-mode), I-mode, and high confinement mode (H-mode) with 96.03% accuracy. Finally, ablation experiments were performed on the regime classifiers, showing that there is potential for further performance improvement with future use of RNN model. |
doi_str_mv | 10.1088/1741-4326/ad107c |
format | Article |
fullrecord | <record><control><sourceid>doaj_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_4326_ad107c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_be675bb52d1c41888d7c045b8b9197fa</doaj_id><sourcerecordid>oai_doaj_org_article_be675bb52d1c41888d7c045b8b9197fa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b6da9740798e287b50aa1bfad87575e509f395f588f63c45e1314e713b1ca6453</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEiHQU7qi4oj3bJ99ZRTxiISgIKktPxPncY58FyH-PZcEUUG1q9mZT9pB6BbIAxApRyAYFIyW1Ug7IMKeocGvdI4GhJR1wTnwS3TVtitCgAGlAzR_8_usN7jx3WfKaxydb7oYotVdTA1OAXdLjz-9Xm--sE1Ln_s73ibncWzwtDhuLrZ2qfPC4z7yOP6YXaOLoDetv_mZQzR_epxNXorX9-fpZPxaWCrKrjCV07VgRNTSl1IYTrQGE7STggvuOakDrXngUoaKWsY9UGBeADVgdcU4HaLpieuSXqldjludv1TSUR2FlBdK5y7ajVfGV4Ibw0sHloGU0glLGDfS1FCLoHsWObFsTm2bffjlAVGHitWhT3XoU50q7iN3p0hMO7VK-9z0z6omqIopUAQqQrnaudAb7_8w_sv9Bvt-iJ8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural network identification of the weakly coherent mode in I-mode discharge on EAST</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><creator>Yang, K.N. ; Liu, Z.X. ; Liu, J. ; Long, F.F. ; Xia, T.Y. ; Gao, X. ; Liu, Y.J. ; Li, J.Y. ; Li, P.C. ; Deng, C.C. ; Yin, X.Y. ; Li, H. ; Xie, J.L. ; Lan, T. ; Mao, W.Z. ; Liu, A.D. ; Zhou, C. ; Ding, W.X. ; Zhuang, G. ; Liu, W.D.</creator><creatorcontrib>Yang, K.N. ; Liu, Z.X. ; Liu, J. ; Long, F.F. ; Xia, T.Y. ; Gao, X. ; Liu, Y.J. ; Li, J.Y. ; Li, P.C. ; Deng, C.C. ; Yin, X.Y. ; Li, H. ; Xie, J.L. ; Lan, T. ; Mao, W.Z. ; Liu, A.D. ; Zhou, C. ; Ding, W.X. ; Zhuang, G. ; Liu, W.D. ; the EAST Team</creatorcontrib><description>The improved energy confinement mode (I-mode) is widely considered as an important operation regime for ITER. I-mode implementation depends on the specified basic plasma parameters and certain operation conditions, which are discovered by statistical plasma characteristics from a large number of I-mode discharges on a tokamak. The extraction process of I-mode plasma characteristics is complicated, time-consuming, and limited to the sampling rate of the measured signals. Experimental observation of the I-mode is accompanied by the appearance of a weakly coherent mode (WCM). However, it takes much time to accurately scan and quantify WCM characteristics when analyzing many I-mode discharges. Recently, a neural network identification method was developed as an I-mode detector to traverse a whole database as a replacement for manual identification. Two fully connected neural network models were trained with the spectrum of propagation velocity of density perturbation from Doppler backward scattering and the electron density measured by a polarimeter-interferometer system with the experimental advanced superconducting tokamak I-mode database. An accuracy of 98.30% in identifying WCMs in I-mode discharges is achieved with the WCM classification model. In addition, the regime classification model was also utilized to successfully distinguish between the low confinement mode (L-mode), I-mode, and high confinement mode (H-mode) with 96.03% accuracy. Finally, ablation experiments were performed on the regime classifiers, showing that there is potential for further performance improvement with future use of RNN model.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ad107c</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>I-mode identification ; L-H transition ; neural network ; weakly coherent mode</subject><ispartof>Nuclear fusion, 2024-01, Vol.64 (1), p.16035</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c372t-b6da9740798e287b50aa1bfad87575e509f395f588f63c45e1314e713b1ca6453</cites><orcidid>0000-0002-2785-5178 ; 0000-0002-0676-8462 ; 0000-0003-1885-2538 ; 0000-0002-1008-6499 ; 0000-0001-7484-401X ; 0000-0002-3164-7320 ; 0000-0002-3144-0151 ; 0000-0003-4423-8830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ad107c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Yang, K.N.</creatorcontrib><creatorcontrib>Liu, Z.X.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Long, F.F.</creatorcontrib><creatorcontrib>Xia, T.Y.</creatorcontrib><creatorcontrib>Gao, X.</creatorcontrib><creatorcontrib>Liu, Y.J.</creatorcontrib><creatorcontrib>Li, J.Y.</creatorcontrib><creatorcontrib>Li, P.C.</creatorcontrib><creatorcontrib>Deng, C.C.</creatorcontrib><creatorcontrib>Yin, X.Y.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Xie, J.L.</creatorcontrib><creatorcontrib>Lan, T.</creatorcontrib><creatorcontrib>Mao, W.Z.</creatorcontrib><creatorcontrib>Liu, A.D.</creatorcontrib><creatorcontrib>Zhou, C.</creatorcontrib><creatorcontrib>Ding, W.X.</creatorcontrib><creatorcontrib>Zhuang, G.</creatorcontrib><creatorcontrib>Liu, W.D.</creatorcontrib><creatorcontrib>the EAST Team</creatorcontrib><title>Neural network identification of the weakly coherent mode in I-mode discharge on EAST</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>The improved energy confinement mode (I-mode) is widely considered as an important operation regime for ITER. I-mode implementation depends on the specified basic plasma parameters and certain operation conditions, which are discovered by statistical plasma characteristics from a large number of I-mode discharges on a tokamak. The extraction process of I-mode plasma characteristics is complicated, time-consuming, and limited to the sampling rate of the measured signals. Experimental observation of the I-mode is accompanied by the appearance of a weakly coherent mode (WCM). However, it takes much time to accurately scan and quantify WCM characteristics when analyzing many I-mode discharges. Recently, a neural network identification method was developed as an I-mode detector to traverse a whole database as a replacement for manual identification. Two fully connected neural network models were trained with the spectrum of propagation velocity of density perturbation from Doppler backward scattering and the electron density measured by a polarimeter-interferometer system with the experimental advanced superconducting tokamak I-mode database. An accuracy of 98.30% in identifying WCMs in I-mode discharges is achieved with the WCM classification model. In addition, the regime classification model was also utilized to successfully distinguish between the low confinement mode (L-mode), I-mode, and high confinement mode (H-mode) with 96.03% accuracy. Finally, ablation experiments were performed on the regime classifiers, showing that there is potential for further performance improvement with future use of RNN model.</description><subject>I-mode identification</subject><subject>L-H transition</subject><subject>neural network</subject><subject>weakly coherent mode</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDtPAzEQhC0EEiHQU7qi4oj3bJ99ZRTxiISgIKktPxPncY58FyH-PZcEUUG1q9mZT9pB6BbIAxApRyAYFIyW1Ug7IMKeocGvdI4GhJR1wTnwS3TVtitCgAGlAzR_8_usN7jx3WfKaxydb7oYotVdTA1OAXdLjz-9Xm--sE1Ln_s73ibncWzwtDhuLrZ2qfPC4z7yOP6YXaOLoDetv_mZQzR_epxNXorX9-fpZPxaWCrKrjCV07VgRNTSl1IYTrQGE7STggvuOakDrXngUoaKWsY9UGBeADVgdcU4HaLpieuSXqldjludv1TSUR2FlBdK5y7ajVfGV4Ibw0sHloGU0glLGDfS1FCLoHsWObFsTm2bffjlAVGHitWhT3XoU50q7iN3p0hMO7VK-9z0z6omqIopUAQqQrnaudAb7_8w_sv9Bvt-iJ8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yang, K.N.</creator><creator>Liu, Z.X.</creator><creator>Liu, J.</creator><creator>Long, F.F.</creator><creator>Xia, T.Y.</creator><creator>Gao, X.</creator><creator>Liu, Y.J.</creator><creator>Li, J.Y.</creator><creator>Li, P.C.</creator><creator>Deng, C.C.</creator><creator>Yin, X.Y.</creator><creator>Li, H.</creator><creator>Xie, J.L.</creator><creator>Lan, T.</creator><creator>Mao, W.Z.</creator><creator>Liu, A.D.</creator><creator>Zhou, C.</creator><creator>Ding, W.X.</creator><creator>Zhuang, G.</creator><creator>Liu, W.D.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2785-5178</orcidid><orcidid>https://orcid.org/0000-0002-0676-8462</orcidid><orcidid>https://orcid.org/0000-0003-1885-2538</orcidid><orcidid>https://orcid.org/0000-0002-1008-6499</orcidid><orcidid>https://orcid.org/0000-0001-7484-401X</orcidid><orcidid>https://orcid.org/0000-0002-3164-7320</orcidid><orcidid>https://orcid.org/0000-0002-3144-0151</orcidid><orcidid>https://orcid.org/0000-0003-4423-8830</orcidid></search><sort><creationdate>20240101</creationdate><title>Neural network identification of the weakly coherent mode in I-mode discharge on EAST</title><author>Yang, K.N. ; Liu, Z.X. ; Liu, J. ; Long, F.F. ; Xia, T.Y. ; Gao, X. ; Liu, Y.J. ; Li, J.Y. ; Li, P.C. ; Deng, C.C. ; Yin, X.Y. ; Li, H. ; Xie, J.L. ; Lan, T. ; Mao, W.Z. ; Liu, A.D. ; Zhou, C. ; Ding, W.X. ; Zhuang, G. ; Liu, W.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b6da9740798e287b50aa1bfad87575e509f395f588f63c45e1314e713b1ca6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>I-mode identification</topic><topic>L-H transition</topic><topic>neural network</topic><topic>weakly coherent mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, K.N.</creatorcontrib><creatorcontrib>Liu, Z.X.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Long, F.F.</creatorcontrib><creatorcontrib>Xia, T.Y.</creatorcontrib><creatorcontrib>Gao, X.</creatorcontrib><creatorcontrib>Liu, Y.J.</creatorcontrib><creatorcontrib>Li, J.Y.</creatorcontrib><creatorcontrib>Li, P.C.</creatorcontrib><creatorcontrib>Deng, C.C.</creatorcontrib><creatorcontrib>Yin, X.Y.</creatorcontrib><creatorcontrib>Li, H.</creatorcontrib><creatorcontrib>Xie, J.L.</creatorcontrib><creatorcontrib>Lan, T.</creatorcontrib><creatorcontrib>Mao, W.Z.</creatorcontrib><creatorcontrib>Liu, A.D.</creatorcontrib><creatorcontrib>Zhou, C.</creatorcontrib><creatorcontrib>Ding, W.X.</creatorcontrib><creatorcontrib>Zhuang, G.</creatorcontrib><creatorcontrib>Liu, W.D.</creatorcontrib><creatorcontrib>the EAST Team</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, K.N.</au><au>Liu, Z.X.</au><au>Liu, J.</au><au>Long, F.F.</au><au>Xia, T.Y.</au><au>Gao, X.</au><au>Liu, Y.J.</au><au>Li, J.Y.</au><au>Li, P.C.</au><au>Deng, C.C.</au><au>Yin, X.Y.</au><au>Li, H.</au><au>Xie, J.L.</au><au>Lan, T.</au><au>Mao, W.Z.</au><au>Liu, A.D.</au><au>Zhou, C.</au><au>Ding, W.X.</au><au>Zhuang, G.</au><au>Liu, W.D.</au><aucorp>the EAST Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network identification of the weakly coherent mode in I-mode discharge on EAST</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>64</volume><issue>1</issue><spage>16035</spage><pages>16035-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>The improved energy confinement mode (I-mode) is widely considered as an important operation regime for ITER. I-mode implementation depends on the specified basic plasma parameters and certain operation conditions, which are discovered by statistical plasma characteristics from a large number of I-mode discharges on a tokamak. The extraction process of I-mode plasma characteristics is complicated, time-consuming, and limited to the sampling rate of the measured signals. Experimental observation of the I-mode is accompanied by the appearance of a weakly coherent mode (WCM). However, it takes much time to accurately scan and quantify WCM characteristics when analyzing many I-mode discharges. Recently, a neural network identification method was developed as an I-mode detector to traverse a whole database as a replacement for manual identification. Two fully connected neural network models were trained with the spectrum of propagation velocity of density perturbation from Doppler backward scattering and the electron density measured by a polarimeter-interferometer system with the experimental advanced superconducting tokamak I-mode database. An accuracy of 98.30% in identifying WCMs in I-mode discharges is achieved with the WCM classification model. In addition, the regime classification model was also utilized to successfully distinguish between the low confinement mode (L-mode), I-mode, and high confinement mode (H-mode) with 96.03% accuracy. Finally, ablation experiments were performed on the regime classifiers, showing that there is potential for further performance improvement with future use of RNN model.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ad107c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2785-5178</orcidid><orcidid>https://orcid.org/0000-0002-0676-8462</orcidid><orcidid>https://orcid.org/0000-0003-1885-2538</orcidid><orcidid>https://orcid.org/0000-0002-1008-6499</orcidid><orcidid>https://orcid.org/0000-0001-7484-401X</orcidid><orcidid>https://orcid.org/0000-0002-3164-7320</orcidid><orcidid>https://orcid.org/0000-0002-3144-0151</orcidid><orcidid>https://orcid.org/0000-0003-4423-8830</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2024-01, Vol.64 (1), p.16035 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_iop_journals_10_1088_1741_4326_ad107c |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals |
subjects | I-mode identification L-H transition neural network weakly coherent mode |
title | Neural network identification of the weakly coherent mode in I-mode discharge on EAST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20identification%20of%20the%20weakly%20coherent%20mode%20in%20I-mode%20discharge%20on%20EAST&rft.jtitle=Nuclear%20fusion&rft.au=Yang,%20K.N.&rft.aucorp=the%20EAST%20Team&rft.date=2024-01-01&rft.volume=64&rft.issue=1&rft.spage=16035&rft.pages=16035-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ad107c&rft_dat=%3Cdoaj_iop_j%3Eoai_doaj_org_article_be675bb52d1c41888d7c045b8b9197fa%3C/doaj_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_be675bb52d1c41888d7c045b8b9197fa&rfr_iscdi=true |