Beryllium melt instabilities and ejection during unmitigated current quenches in ITER

The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2023-01, Vol.63 (1), p.16004
Hauptverfasser: Vignitchouk, L., Ratynskaia, S., Pitts, R.A., Lehnen, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 16004
container_title Nuclear fusion
container_volume 63
creator Vignitchouk, L.
Ratynskaia, S.
Pitts, R.A.
Lehnen, M.
description The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.
doi_str_mv 10.1088/1741-4326/aca167
format Article
fullrecord <record><control><sourceid>swepub_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_4326_aca167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_16177b0349e340409575d8f0bc73eb0c</doaj_id><sourcerecordid>oai_DiVA_org_kth_322313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxUVpIdtt7znq1FPdzFiSZR_TNG0XAoGQ9Cr0udHWK29lmZD_vt44BALtaWDmvd_Ae4ScInxBaNszlBwrzurmTFuNjXxDVi-rt2QFUHeVEChOyPtx3AEgR8ZW5O6rz499H6c93fu-0JjGok3sY4l-pDo56nfeljgk6qYc05ZOaT8ft7p4R-2Us0-F_pl8svezISa6ub28-UDeBd2P_uPzXJO775e3Fz-rq-sfm4vzq8pyFKWSNjDBmWyNBI2AwFjrGAvo0VgtmiA6aUJn64CtdAKMNtAhq2vbtOhszdZks3DdoHfqkONe50c16KieFkPeKp1LtL1X2KCUBhjvPOPAoRNSuDaAsZJ5A3ZmVQtrfPCHybyifYu_zp9ov8u9mv-zObs1gUVv8zCO2YcXB4I6VqKO-atj_mqpZLZ8WixxOKjdMOU0h6NSUA1TqAAbAK4OLszCz_8Q_pf7F1UAmUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><creator>Vignitchouk, L. ; Ratynskaia, S. ; Pitts, R.A. ; Lehnen, M.</creator><creatorcontrib>Vignitchouk, L. ; Ratynskaia, S. ; Pitts, R.A. ; Lehnen, M.</creatorcontrib><description>The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.</description><identifier>ISSN: 0029-5515</identifier><identifier>ISSN: 1741-4326</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/aca167</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>disruption-induced melting ; melt dynamics ; metallic droplets ; splashing</subject><ispartof>Nuclear fusion, 2023-01, Vol.63 (1), p.16004</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</citedby><cites>FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</cites><orcidid>0000-0002-6712-3625 ; 0000-0001-9455-2698 ; 0000-0001-7796-1887 ; 0000-0001-6043-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/aca167/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,778,782,862,883,2098,27907,27908,38873,53850</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-322313$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vignitchouk, L.</creatorcontrib><creatorcontrib>Ratynskaia, S.</creatorcontrib><creatorcontrib>Pitts, R.A.</creatorcontrib><creatorcontrib>Lehnen, M.</creatorcontrib><title>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.</description><subject>disruption-induced melting</subject><subject>melt dynamics</subject><subject>metallic droplets</subject><subject>splashing</subject><issn>0029-5515</issn><issn>1741-4326</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1r3DAQxUVpIdtt7znq1FPdzFiSZR_TNG0XAoGQ9Cr0udHWK29lmZD_vt44BALtaWDmvd_Ae4ScInxBaNszlBwrzurmTFuNjXxDVi-rt2QFUHeVEChOyPtx3AEgR8ZW5O6rz499H6c93fu-0JjGok3sY4l-pDo56nfeljgk6qYc05ZOaT8ft7p4R-2Us0-F_pl8svezISa6ub28-UDeBd2P_uPzXJO775e3Fz-rq-sfm4vzq8pyFKWSNjDBmWyNBI2AwFjrGAvo0VgtmiA6aUJn64CtdAKMNtAhq2vbtOhszdZks3DdoHfqkONe50c16KieFkPeKp1LtL1X2KCUBhjvPOPAoRNSuDaAsZJ5A3ZmVQtrfPCHybyifYu_zp9ov8u9mv-zObs1gUVv8zCO2YcXB4I6VqKO-atj_mqpZLZ8WixxOKjdMOU0h6NSUA1TqAAbAK4OLszCz_8Q_pf7F1UAmUQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Vignitchouk, L.</creator><creator>Ratynskaia, S.</creator><creator>Pitts, R.A.</creator><creator>Lehnen, M.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6712-3625</orcidid><orcidid>https://orcid.org/0000-0001-9455-2698</orcidid><orcidid>https://orcid.org/0000-0001-7796-1887</orcidid><orcidid>https://orcid.org/0000-0001-6043-8803</orcidid></search><sort><creationdate>20230101</creationdate><title>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</title><author>Vignitchouk, L. ; Ratynskaia, S. ; Pitts, R.A. ; Lehnen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>disruption-induced melting</topic><topic>melt dynamics</topic><topic>metallic droplets</topic><topic>splashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignitchouk, L.</creatorcontrib><creatorcontrib>Ratynskaia, S.</creatorcontrib><creatorcontrib>Pitts, R.A.</creatorcontrib><creatorcontrib>Lehnen, M.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignitchouk, L.</au><au>Ratynskaia, S.</au><au>Pitts, R.A.</au><au>Lehnen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>63</volume><issue>1</issue><spage>16004</spage><pages>16004-</pages><issn>0029-5515</issn><issn>1741-4326</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/aca167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6712-3625</orcidid><orcidid>https://orcid.org/0000-0001-9455-2698</orcidid><orcidid>https://orcid.org/0000-0001-7796-1887</orcidid><orcidid>https://orcid.org/0000-0001-6043-8803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2023-01, Vol.63 (1), p.16004
issn 0029-5515
1741-4326
1741-4326
language eng
recordid cdi_iop_journals_10_1088_1741_4326_aca167
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals
subjects disruption-induced melting
melt dynamics
metallic droplets
splashing
title Beryllium melt instabilities and ejection during unmitigated current quenches in ITER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beryllium%20melt%20instabilities%20and%20ejection%20during%20unmitigated%20current%20quenches%20in%20ITER&rft.jtitle=Nuclear%20fusion&rft.au=Vignitchouk,%20L.&rft.date=2023-01-01&rft.volume=63&rft.issue=1&rft.spage=16004&rft.pages=16004-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/aca167&rft_dat=%3Cswepub_iop_j%3Eoai_DiVA_org_kth_322313%3C/swepub_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_16177b0349e340409575d8f0bc73eb0c&rfr_iscdi=true