Beryllium melt instabilities and ejection during unmitigated current quenches in ITER
The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2023-01, Vol.63 (1), p.16004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16004 |
container_title | Nuclear fusion |
container_volume | 63 |
creator | Vignitchouk, L. Ratynskaia, S. Pitts, R.A. Lehnen, M. |
description | The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER. |
doi_str_mv | 10.1088/1741-4326/aca167 |
format | Article |
fullrecord | <record><control><sourceid>swepub_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_4326_aca167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_16177b0349e340409575d8f0bc73eb0c</doaj_id><sourcerecordid>oai_DiVA_org_kth_322313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</originalsourceid><addsrcrecordid>eNp1kc1r3DAQxUVpIdtt7znq1FPdzFiSZR_TNG0XAoGQ9Cr0udHWK29lmZD_vt44BALtaWDmvd_Ae4ScInxBaNszlBwrzurmTFuNjXxDVi-rt2QFUHeVEChOyPtx3AEgR8ZW5O6rz499H6c93fu-0JjGok3sY4l-pDo56nfeljgk6qYc05ZOaT8ft7p4R-2Us0-F_pl8svezISa6ub28-UDeBd2P_uPzXJO775e3Fz-rq-sfm4vzq8pyFKWSNjDBmWyNBI2AwFjrGAvo0VgtmiA6aUJn64CtdAKMNtAhq2vbtOhszdZks3DdoHfqkONe50c16KieFkPeKp1LtL1X2KCUBhjvPOPAoRNSuDaAsZJ5A3ZmVQtrfPCHybyifYu_zp9ov8u9mv-zObs1gUVv8zCO2YcXB4I6VqKO-atj_mqpZLZ8WixxOKjdMOU0h6NSUA1TqAAbAK4OLszCz_8Q_pf7F1UAmUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><creator>Vignitchouk, L. ; Ratynskaia, S. ; Pitts, R.A. ; Lehnen, M.</creator><creatorcontrib>Vignitchouk, L. ; Ratynskaia, S. ; Pitts, R.A. ; Lehnen, M.</creatorcontrib><description>The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.</description><identifier>ISSN: 0029-5515</identifier><identifier>ISSN: 1741-4326</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/aca167</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>disruption-induced melting ; melt dynamics ; metallic droplets ; splashing</subject><ispartof>Nuclear fusion, 2023-01, Vol.63 (1), p.16004</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</citedby><cites>FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</cites><orcidid>0000-0002-6712-3625 ; 0000-0001-9455-2698 ; 0000-0001-7796-1887 ; 0000-0001-6043-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/aca167/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,778,782,862,883,2098,27907,27908,38873,53850</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-322313$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vignitchouk, L.</creatorcontrib><creatorcontrib>Ratynskaia, S.</creatorcontrib><creatorcontrib>Pitts, R.A.</creatorcontrib><creatorcontrib>Lehnen, M.</creatorcontrib><title>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.</description><subject>disruption-induced melting</subject><subject>melt dynamics</subject><subject>metallic droplets</subject><subject>splashing</subject><issn>0029-5515</issn><issn>1741-4326</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1r3DAQxUVpIdtt7znq1FPdzFiSZR_TNG0XAoGQ9Cr0udHWK29lmZD_vt44BALtaWDmvd_Ae4ScInxBaNszlBwrzurmTFuNjXxDVi-rt2QFUHeVEChOyPtx3AEgR8ZW5O6rz499H6c93fu-0JjGok3sY4l-pDo56nfeljgk6qYc05ZOaT8ft7p4R-2Us0-F_pl8svezISa6ub28-UDeBd2P_uPzXJO775e3Fz-rq-sfm4vzq8pyFKWSNjDBmWyNBI2AwFjrGAvo0VgtmiA6aUJn64CtdAKMNtAhq2vbtOhszdZks3DdoHfqkONe50c16KieFkPeKp1LtL1X2KCUBhjvPOPAoRNSuDaAsZJ5A3ZmVQtrfPCHybyifYu_zp9ov8u9mv-zObs1gUVv8zCO2YcXB4I6VqKO-atj_mqpZLZ8WixxOKjdMOU0h6NSUA1TqAAbAK4OLszCz_8Q_pf7F1UAmUQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Vignitchouk, L.</creator><creator>Ratynskaia, S.</creator><creator>Pitts, R.A.</creator><creator>Lehnen, M.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6712-3625</orcidid><orcidid>https://orcid.org/0000-0001-9455-2698</orcidid><orcidid>https://orcid.org/0000-0001-7796-1887</orcidid><orcidid>https://orcid.org/0000-0001-6043-8803</orcidid></search><sort><creationdate>20230101</creationdate><title>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</title><author>Vignitchouk, L. ; Ratynskaia, S. ; Pitts, R.A. ; Lehnen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7cf354378b70a1010338d33f1e1bca56f597bf9c2f187d50bab091322c681dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>disruption-induced melting</topic><topic>melt dynamics</topic><topic>metallic droplets</topic><topic>splashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignitchouk, L.</creatorcontrib><creatorcontrib>Ratynskaia, S.</creatorcontrib><creatorcontrib>Pitts, R.A.</creatorcontrib><creatorcontrib>Lehnen, M.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignitchouk, L.</au><au>Ratynskaia, S.</au><au>Pitts, R.A.</au><au>Lehnen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beryllium melt instabilities and ejection during unmitigated current quenches in ITER</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>63</volume><issue>1</issue><spage>16004</spage><pages>16004-</pages><issn>0029-5515</issn><issn>1741-4326</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>The dynamics of transient liquid beryllium flows induced on the ITER first wall during the current quench stage of unmitigated vertical displacement events are modelled by means of two-dimensional Navier–Stokes simulations. The study focuses on melt that is driven to the first wall panels’ chamfered edges, where free-surface instabilities are the most likely to be seeded. Beyond their impact on plasma-facing component damage, these instabilities potentially result in material ejection in the form of droplets, which may ultimately solidify into dust and accumulate in the vessel. Based on prior integrated numerical predictions of quenching magnetic equilibria, wall energy deposition and melt-related damage in a concrete worst-case disruption scenario, the simulations suggest that, although the liquid layer is significantly destabilized, only 5% of the total melt mass created on the wall surface is lost through ejection. This result can serve as a basis to refine the estimates of the real transient-induced beryllium dust inventory expected in ITER.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/aca167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6712-3625</orcidid><orcidid>https://orcid.org/0000-0001-9455-2698</orcidid><orcidid>https://orcid.org/0000-0001-7796-1887</orcidid><orcidid>https://orcid.org/0000-0001-6043-8803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2023-01, Vol.63 (1), p.16004 |
issn | 0029-5515 1741-4326 1741-4326 |
language | eng |
recordid | cdi_iop_journals_10_1088_1741_4326_aca167 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals |
subjects | disruption-induced melting melt dynamics metallic droplets splashing |
title | Beryllium melt instabilities and ejection during unmitigated current quenches in ITER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beryllium%20melt%20instabilities%20and%20ejection%20during%20unmitigated%20current%20quenches%20in%20ITER&rft.jtitle=Nuclear%20fusion&rft.au=Vignitchouk,%20L.&rft.date=2023-01-01&rft.volume=63&rft.issue=1&rft.spage=16004&rft.pages=16004-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/aca167&rft_dat=%3Cswepub_iop_j%3Eoai_DiVA_org_kth_322313%3C/swepub_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_16177b0349e340409575d8f0bc73eb0c&rfr_iscdi=true |