MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D

A drift orbit model for relativistic test electrons has been incorporated into the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to study the runaway electron (RE) behavior in the presence of magneto-hydrodynamic perturbations computed by MARS-F. By implementing the model directly into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2019-10, Vol.59 (12), p.126021
Hauptverfasser: Liu, Y.Q., Parks, P.B., Paz-Soldan, C., Kim, C., Lao, L.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 126021
container_title Nuclear fusion
container_volume 59
creator Liu, Y.Q.
Parks, P.B.
Paz-Soldan, C.
Kim, C.
Lao, L.L.
description A drift orbit model for relativistic test electrons has been incorporated into the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to study the runaway electron (RE) behavior in the presence of magneto-hydrodynamic perturbations computed by MARS-F. By implementing the model directly into the MARS-F curve-linear magnetic coordinates, maximal accuracy in representing the full field perturbation is preserved. The updated code is utilized to study the high current RE beam loss in a post-disruption DIII-D plasma, revealing that a fast growing, n  =  1 (n is the toroidal mode number) resistive kink instability, at   100 Gauss level, can induce significant fraction of RE loss, largely by perturbing drift orbits of REs. A   1000 Gauss perturbation fully terminates the RE beam, as found in both experiment and modeling. The 3D field induced loss increases with the perturbation amplitude but decreases with the particle energy. The loss fraction is generally not sensitive to the initial particle pitch angle. The particle velocity change, due to electric field acceleration/deceleration, small pitch angle scattering, synchrotron radiation and Bremsstrahlung, further perturbs the RE trajectory but plays a minor role in prompt RE loss within microseconds time scale. Therefore, the dominant dependencies are simply the RE energy and instability strength. For comparison, a resonant magnetic perturbation field, generated by 4 kAt n  =  3 even parity I-coil currents in DIII-D and with the plasma response field included, is found to induce almost no loss for the same RE beam.
doi_str_mv 10.1088/1741-4326/ab3f87
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_4326_ab3f87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfab3f87</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c9d438b8fbe2b997b980eb53b8b37cc1138c37be4e4129ea7de3cc9be3a07dfa3</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKfvPgafjSZNu6SPY3NamAh-PIckTbeMNilJhvS_t6Pim0-Xcznncs8PgFuCHwjm_JGwnKCcZotHqWjD2RmY_a3OwQzjrERFQYpLcBXjAWOSE0pnQL8u3z_QBna-Nq11O-gb2PuYUG1jOPbJegfD0clvOUBlZAdbHyNUA-zkzpnk90MdfD042VkNrYtJKtvaZE0cFVxXVYXW1-CikW00N79zDr42T5-rF7R9e65Wyy3SNC8T0mWdU654o0ymypKpkmOjCqq4okxrQijXlCmTm5xkpZGsNlTrUhkqMasbSefgbro7_m9F1DYZvdfeOaOTIMWCs0UxmvBk0mFsEkwj-mA7GQZBsDiRFCds4oRNTCTHyP0Usb4XB38Mbmzxv_0H2jB2GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Y.Q. ; Parks, P.B. ; Paz-Soldan, C. ; Kim, C. ; Lao, L.L.</creator><creatorcontrib>Liu, Y.Q. ; Parks, P.B. ; Paz-Soldan, C. ; Kim, C. ; Lao, L.L. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>A drift orbit model for relativistic test electrons has been incorporated into the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to study the runaway electron (RE) behavior in the presence of magneto-hydrodynamic perturbations computed by MARS-F. By implementing the model directly into the MARS-F curve-linear magnetic coordinates, maximal accuracy in representing the full field perturbation is preserved. The updated code is utilized to study the high current RE beam loss in a post-disruption DIII-D plasma, revealing that a fast growing, n  =  1 (n is the toroidal mode number) resistive kink instability, at   100 Gauss level, can induce significant fraction of RE loss, largely by perturbing drift orbits of REs. A   1000 Gauss perturbation fully terminates the RE beam, as found in both experiment and modeling. The 3D field induced loss increases with the perturbation amplitude but decreases with the particle energy. The loss fraction is generally not sensitive to the initial particle pitch angle. The particle velocity change, due to electric field acceleration/deceleration, small pitch angle scattering, synchrotron radiation and Bremsstrahlung, further perturbs the RE trajectory but plays a minor role in prompt RE loss within microseconds time scale. Therefore, the dominant dependencies are simply the RE energy and instability strength. For comparison, a resonant magnetic perturbation field, generated by 4 kAt n  =  3 even parity I-coil currents in DIII-D and with the plasma response field included, is found to induce almost no loss for the same RE beam.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab3f87</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; disruption ; MHD ; MHD instabilities ; orbit loss ; RE loss ; runaway electrons</subject><ispartof>Nuclear fusion, 2019-10, Vol.59 (12), p.126021</ispartof><rights>2019 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c9d438b8fbe2b997b980eb53b8b37cc1138c37be4e4129ea7de3cc9be3a07dfa3</citedby><cites>FETCH-LOGICAL-c349t-c9d438b8fbe2b997b980eb53b8b37cc1138c37be4e4129ea7de3cc9be3a07dfa3</cites><orcidid>0000-0001-5069-4934 ; 0000000150694934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ab3f87/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1568765$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Y.Q.</creatorcontrib><creatorcontrib>Parks, P.B.</creatorcontrib><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Kim, C.</creatorcontrib><creatorcontrib>Lao, L.L.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>A drift orbit model for relativistic test electrons has been incorporated into the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to study the runaway electron (RE) behavior in the presence of magneto-hydrodynamic perturbations computed by MARS-F. By implementing the model directly into the MARS-F curve-linear magnetic coordinates, maximal accuracy in representing the full field perturbation is preserved. The updated code is utilized to study the high current RE beam loss in a post-disruption DIII-D plasma, revealing that a fast growing, n  =  1 (n is the toroidal mode number) resistive kink instability, at   100 Gauss level, can induce significant fraction of RE loss, largely by perturbing drift orbits of REs. A   1000 Gauss perturbation fully terminates the RE beam, as found in both experiment and modeling. The 3D field induced loss increases with the perturbation amplitude but decreases with the particle energy. The loss fraction is generally not sensitive to the initial particle pitch angle. The particle velocity change, due to electric field acceleration/deceleration, small pitch angle scattering, synchrotron radiation and Bremsstrahlung, further perturbs the RE trajectory but plays a minor role in prompt RE loss within microseconds time scale. Therefore, the dominant dependencies are simply the RE energy and instability strength. For comparison, a resonant magnetic perturbation field, generated by 4 kAt n  =  3 even parity I-coil currents in DIII-D and with the plasma response field included, is found to induce almost no loss for the same RE beam.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>disruption</subject><subject>MHD</subject><subject>MHD instabilities</subject><subject>orbit loss</subject><subject>RE loss</subject><subject>runaway electrons</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMoOKfvPgafjSZNu6SPY3NamAh-PIckTbeMNilJhvS_t6Pim0-Xcznncs8PgFuCHwjm_JGwnKCcZotHqWjD2RmY_a3OwQzjrERFQYpLcBXjAWOSE0pnQL8u3z_QBna-Nq11O-gb2PuYUG1jOPbJegfD0clvOUBlZAdbHyNUA-zkzpnk90MdfD042VkNrYtJKtvaZE0cFVxXVYXW1-CikW00N79zDr42T5-rF7R9e65Wyy3SNC8T0mWdU654o0ymypKpkmOjCqq4okxrQijXlCmTm5xkpZGsNlTrUhkqMasbSefgbro7_m9F1DYZvdfeOaOTIMWCs0UxmvBk0mFsEkwj-mA7GQZBsDiRFCds4oRNTCTHyP0Usb4XB38Mbmzxv_0H2jB2GA</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>Liu, Y.Q.</creator><creator>Parks, P.B.</creator><creator>Paz-Soldan, C.</creator><creator>Kim, C.</creator><creator>Lao, L.L.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid></search><sort><creationdate>20191011</creationdate><title>MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D</title><author>Liu, Y.Q. ; Parks, P.B. ; Paz-Soldan, C. ; Kim, C. ; Lao, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c9d438b8fbe2b997b980eb53b8b37cc1138c37be4e4129ea7de3cc9be3a07dfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>disruption</topic><topic>MHD</topic><topic>MHD instabilities</topic><topic>orbit loss</topic><topic>RE loss</topic><topic>runaway electrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Y.Q.</creatorcontrib><creatorcontrib>Parks, P.B.</creatorcontrib><creatorcontrib>Paz-Soldan, C.</creatorcontrib><creatorcontrib>Kim, C.</creatorcontrib><creatorcontrib>Lao, L.L.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Y.Q.</au><au>Parks, P.B.</au><au>Paz-Soldan, C.</au><au>Kim, C.</au><au>Lao, L.L.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2019-10-11</date><risdate>2019</risdate><volume>59</volume><issue>12</issue><spage>126021</spage><pages>126021-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>A drift orbit model for relativistic test electrons has been incorporated into the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to study the runaway electron (RE) behavior in the presence of magneto-hydrodynamic perturbations computed by MARS-F. By implementing the model directly into the MARS-F curve-linear magnetic coordinates, maximal accuracy in representing the full field perturbation is preserved. The updated code is utilized to study the high current RE beam loss in a post-disruption DIII-D plasma, revealing that a fast growing, n  =  1 (n is the toroidal mode number) resistive kink instability, at   100 Gauss level, can induce significant fraction of RE loss, largely by perturbing drift orbits of REs. A   1000 Gauss perturbation fully terminates the RE beam, as found in both experiment and modeling. The 3D field induced loss increases with the perturbation amplitude but decreases with the particle energy. The loss fraction is generally not sensitive to the initial particle pitch angle. The particle velocity change, due to electric field acceleration/deceleration, small pitch angle scattering, synchrotron radiation and Bremsstrahlung, further perturbs the RE trajectory but plays a minor role in prompt RE loss within microseconds time scale. Therefore, the dominant dependencies are simply the RE energy and instability strength. For comparison, a resonant magnetic perturbation field, generated by 4 kAt n  =  3 even parity I-coil currents in DIII-D and with the plasma response field included, is found to induce almost no loss for the same RE beam.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ab3f87</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5069-4934</orcidid><orcidid>https://orcid.org/0000000150694934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2019-10, Vol.59 (12), p.126021
issn 0029-5515
1741-4326
language eng
recordid cdi_iop_journals_10_1088_1741_4326_ab3f87
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
disruption
MHD
MHD instabilities
orbit loss
RE loss
runaway electrons
title MARS-F modeling of post-disruption runaway beam loss by magnetohydrodynamic instabilities in DIII-D
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MARS-F%20modeling%20of%20post-disruption%20runaway%20beam%20loss%20by%20magnetohydrodynamic%20instabilities%20in%20DIII-D&rft.jtitle=Nuclear%20fusion&rft.au=Liu,%20Y.Q.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2019-10-11&rft.volume=59&rft.issue=12&rft.spage=126021&rft.pages=126021-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ab3f87&rft_dat=%3Ciop_osti_%3Enfab3f87%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true