Modification of the Alfvén wave spectrum by pellet injection

Alfvén eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfvén waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2019-10, Vol.59 (10), p.106031
Hauptverfasser: Oliver, H.J.C., Sharapov, S.E., Breizman, B.N., Fontanilla, A.K., Spong, D.A., Terranova, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 106031
container_title Nuclear fusion
container_volume 59
creator Oliver, H.J.C.
Sharapov, S.E.
Breizman, B.N.
Fontanilla, A.K.
Spong, D.A.
Terranova, D.
description Alfvén eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfvén waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfvén continuum and discrete eigenmode spectrum. The frequencies of Alfvén eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfvén eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MHD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfvén eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfvén eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4 cm is estimated to be m−3 at the TAE location (). The frequency sweeping of an Alfvén eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is ms for inboard pellet injection, and ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfvén eigenmode (EAE), the initial ion density at the EAE location () can be estimated to be m−3. Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection.
doi_str_mv 10.1088/1741-4326/ab382b
format Article
fullrecord <record><control><sourceid>hal_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_4326_ab382b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02459751v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-593982b6d302beb62bc5101161e8e015e9ef4cacfb8f8f075af82db2f431eb803</originalsourceid><addsrcrecordid>eNp1kE9LwzAYxoMoOKd3j8GbYF3epmnTg4cx_0yYeFGvIckSl9E1pWk39pH8HH4xWyqKB08vPPyel4cfQudAroFwPoEsgSihcTqRivJYHaDRT3SIRoTEecQYsGN0EsKaEEiA0hG6efJLZ52WjfMl9hY3K4Onhd1-fpR4J7cGh8ropm43WO1xZYrCNNiV6y7rCqfoyMoimLPvO0av93cvs3m0eH54nE0XkU542kQsp3k3KV1SEiuj0lhpBgQgBcMNAWZyYxMttVXccksyJi2Plyq2CQWjOKFjdDX8DTtTtUpUtdvIei-8dOLWvU2Fr99F2wqa54RkHX4x4D40TgTtGqNX2pdlt1pAmvA87aHLAVrJ4s_D-XQh-ozECcszBlvoWDKwuvYh1Mb-FICIXr_oXYvetRj0_052vhJr39ZlJ-h__AuDCYWH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modification of the Alfvén wave spectrum by pellet injection</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Oliver, H.J.C. ; Sharapov, S.E. ; Breizman, B.N. ; Fontanilla, A.K. ; Spong, D.A. ; Terranova, D.</creator><creatorcontrib>Oliver, H.J.C. ; Sharapov, S.E. ; Breizman, B.N. ; Fontanilla, A.K. ; Spong, D.A. ; Terranova, D. ; JET Contributors ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Alfvén eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfvén waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfvén continuum and discrete eigenmode spectrum. The frequencies of Alfvén eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfvén eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MHD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfvén eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfvén eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4 cm is estimated to be m−3 at the TAE location (). The frequency sweeping of an Alfvén eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is ms for inboard pellet injection, and ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfvén eigenmode (EAE), the initial ion density at the EAE location () can be estimated to be m−3. Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection.</description><identifier>ISSN: 0029-5515</identifier><identifier>ISSN: 1741-4326</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab382b</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Alfven eigenmodes ; Alfvén eigenmodes ; MHD spectroscopy ; pellet injection ; Physics ; Plasma Physics</subject><ispartof>Nuclear fusion, 2019-10, Vol.59 (10), p.106031</ispartof><rights>EURATOM 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-593982b6d302beb62bc5101161e8e015e9ef4cacfb8f8f075af82db2f431eb803</citedby><cites>FETCH-LOGICAL-c486t-593982b6d302beb62bc5101161e8e015e9ef4cacfb8f8f075af82db2f431eb803</cites><orcidid>0000-0001-7006-4876 ; 0000-0001-9339-283X ; 0000-0002-7302-085X ; 0000-0003-2370-1873 ; 0000000323701873 ; 000000019339283X ; 000000027302085X ; 0000000170064876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ab382b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02459751$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1648967$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-399007$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, H.J.C.</creatorcontrib><creatorcontrib>Sharapov, S.E.</creatorcontrib><creatorcontrib>Breizman, B.N.</creatorcontrib><creatorcontrib>Fontanilla, A.K.</creatorcontrib><creatorcontrib>Spong, D.A.</creatorcontrib><creatorcontrib>Terranova, D.</creatorcontrib><creatorcontrib>JET Contributors</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Modification of the Alfvén wave spectrum by pellet injection</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Alfvén eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfvén waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfvén continuum and discrete eigenmode spectrum. The frequencies of Alfvén eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfvén eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MHD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfvén eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfvén eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4 cm is estimated to be m−3 at the TAE location (). The frequency sweeping of an Alfvén eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is ms for inboard pellet injection, and ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfvén eigenmode (EAE), the initial ion density at the EAE location () can be estimated to be m−3. Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Alfven eigenmodes</subject><subject>Alfvén eigenmodes</subject><subject>MHD spectroscopy</subject><subject>pellet injection</subject><subject>Physics</subject><subject>Plasma Physics</subject><issn>0029-5515</issn><issn>1741-4326</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYxoMoOKd3j8GbYF3epmnTg4cx_0yYeFGvIckSl9E1pWk39pH8HH4xWyqKB08vPPyel4cfQudAroFwPoEsgSihcTqRivJYHaDRT3SIRoTEecQYsGN0EsKaEEiA0hG6efJLZ52WjfMl9hY3K4Onhd1-fpR4J7cGh8ropm43WO1xZYrCNNiV6y7rCqfoyMoimLPvO0av93cvs3m0eH54nE0XkU542kQsp3k3KV1SEiuj0lhpBgQgBcMNAWZyYxMttVXccksyJi2Plyq2CQWjOKFjdDX8DTtTtUpUtdvIei-8dOLWvU2Fr99F2wqa54RkHX4x4D40TgTtGqNX2pdlt1pAmvA87aHLAVrJ4s_D-XQh-ozECcszBlvoWDKwuvYh1Mb-FICIXr_oXYvetRj0_052vhJr39ZlJ-h__AuDCYWH</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Oliver, H.J.C.</creator><creator>Sharapov, S.E.</creator><creator>Breizman, B.N.</creator><creator>Fontanilla, A.K.</creator><creator>Spong, D.A.</creator><creator>Terranova, D.</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0001-7006-4876</orcidid><orcidid>https://orcid.org/0000-0001-9339-283X</orcidid><orcidid>https://orcid.org/0000-0002-7302-085X</orcidid><orcidid>https://orcid.org/0000-0003-2370-1873</orcidid><orcidid>https://orcid.org/0000000323701873</orcidid><orcidid>https://orcid.org/000000019339283X</orcidid><orcidid>https://orcid.org/000000027302085X</orcidid><orcidid>https://orcid.org/0000000170064876</orcidid></search><sort><creationdate>20191001</creationdate><title>Modification of the Alfvén wave spectrum by pellet injection</title><author>Oliver, H.J.C. ; Sharapov, S.E. ; Breizman, B.N. ; Fontanilla, A.K. ; Spong, D.A. ; Terranova, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-593982b6d302beb62bc5101161e8e015e9ef4cacfb8f8f075af82db2f431eb803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Alfven eigenmodes</topic><topic>Alfvén eigenmodes</topic><topic>MHD spectroscopy</topic><topic>pellet injection</topic><topic>Physics</topic><topic>Plasma Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, H.J.C.</creatorcontrib><creatorcontrib>Sharapov, S.E.</creatorcontrib><creatorcontrib>Breizman, B.N.</creatorcontrib><creatorcontrib>Fontanilla, A.K.</creatorcontrib><creatorcontrib>Spong, D.A.</creatorcontrib><creatorcontrib>Terranova, D.</creatorcontrib><creatorcontrib>JET Contributors</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, H.J.C.</au><au>Sharapov, S.E.</au><au>Breizman, B.N.</au><au>Fontanilla, A.K.</au><au>Spong, D.A.</au><au>Terranova, D.</au><aucorp>JET Contributors</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of the Alfvén wave spectrum by pellet injection</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>59</volume><issue>10</issue><spage>106031</spage><pages>106031-</pages><issn>0029-5515</issn><issn>1741-4326</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Alfvén eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfvén waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfvén continuum and discrete eigenmode spectrum. The frequencies of Alfvén eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfvén eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MHD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfvén eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfvén eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4 cm is estimated to be m−3 at the TAE location (). The frequency sweeping of an Alfvén eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is ms for inboard pellet injection, and ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfvén eigenmode (EAE), the initial ion density at the EAE location () can be estimated to be m−3. Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ab382b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7006-4876</orcidid><orcidid>https://orcid.org/0000-0001-9339-283X</orcidid><orcidid>https://orcid.org/0000-0002-7302-085X</orcidid><orcidid>https://orcid.org/0000-0003-2370-1873</orcidid><orcidid>https://orcid.org/0000000323701873</orcidid><orcidid>https://orcid.org/000000019339283X</orcidid><orcidid>https://orcid.org/000000027302085X</orcidid><orcidid>https://orcid.org/0000000170064876</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2019-10, Vol.59 (10), p.106031
issn 0029-5515
1741-4326
1741-4326
language eng
recordid cdi_iop_journals_10_1088_1741_4326_ab382b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Alfven eigenmodes
Alfvén eigenmodes
MHD spectroscopy
pellet injection
Physics
Plasma Physics
title Modification of the Alfvén wave spectrum by pellet injection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20the%20Alfv%C3%A9n%20wave%20spectrum%20by%20pellet%20injection&rft.jtitle=Nuclear%20fusion&rft.au=Oliver,%20H.J.C.&rft.aucorp=JET%20Contributors&rft.date=2019-10-01&rft.volume=59&rft.issue=10&rft.spage=106031&rft.pages=106031-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ab382b&rft_dat=%3Chal_iop_j%3Eoai_HAL_hal_02459751v1%3C/hal_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true