Study of slowing down mechanism of locked-mode-like instability in helical plasmas

The mode slowing down mechanism of the locked-mode-like instability without a large magnetic island is investigated, based on the LHD experimental analysis. The mode frequency coincides with E  ×  B rotation frequency at the resonant surface and the slowing down is caused by two processes. One is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2019-05, Vol.59 (6), p.66036
Hauptverfasser: Takemura, Y., Watanabe, K.Y., Sakakibara, S., Ohdachi, S., Narushima, Y., Ida, K., Yoshinuma, M., Tsuchiya, H., Tokuzawa, T., Yamada, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 66036
container_title Nuclear fusion
container_volume 59
creator Takemura, Y.
Watanabe, K.Y.
Sakakibara, S.
Ohdachi, S.
Narushima, Y.
Ida, K.
Yoshinuma, M.
Tsuchiya, H.
Tokuzawa, T.
Yamada, I.
description The mode slowing down mechanism of the locked-mode-like instability without a large magnetic island is investigated, based on the LHD experimental analysis. The mode frequency coincides with E  ×  B rotation frequency at the resonant surface and the slowing down is caused by two processes. One is the resonant surface moving to the small E  ×  B rotation frequency region and the other is the slowing down of the E  ×  B rotation frequency near the resonant surface. Both processes are almost the same as those of the locked-mode-like instability with a large magnetic island. The results suggest that the slowing down occurs even though the precursor does not have a large magnetic island. However, when the external RMP is imposed, the mode frequency in the slowing down phase sometimes does not coincide with the E  ×  B rotation frequency. Moreover, the mode amplitude during the slowing down phase increases with the decrease of the mode frequency both with and without the imposed external RMP, which suggests that the instability growth in the slowing down phase is more strongly related to the mode frequency than the E  ×  B rotation frequency because the mode sometimes does not rotate with the E  ×  B rotation.
doi_str_mv 10.1088/1741-4326/ab169f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_4326_ab169f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfab169f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-ff2b74bb8dd87c6908058c7c0b6121ad38506bf39ab1676d787c8830530256463</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEqVw5-gTJ0LHcew4R1SxSZWQWM6W44W6deIoTlX135OoiBOcZjTz3tPMh9A1gTsCQixIWZCsoDlfqJrwyp2g2e_oFM0A8ipjjLBzdJHSBoAUhNIZensfduaAo8MpxL1vv7CJ-xY3Vq9V61MzbULUW2uyJhqbBb-12LdpULUPfjiMPV7b4LUKuAsqNSpdojOnQrJXP3WOPh8fPpbP2er16WV5v8p0wemQOZfXZVHXwhhRal6BACZ0qaHmJCfKUMGA145W0z8lN-WoEoICo5AzPkbMERxzdR9T6q2TXe8b1R8kATkxkRMAOQGQRyaj5eZo8bGTm7jr2_FA2TrJKsklcA6Uy85Mwts_hP_mfgPmmm9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Study of slowing down mechanism of locked-mode-like instability in helical plasmas</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Takemura, Y. ; Watanabe, K.Y. ; Sakakibara, S. ; Ohdachi, S. ; Narushima, Y. ; Ida, K. ; Yoshinuma, M. ; Tsuchiya, H. ; Tokuzawa, T. ; Yamada, I.</creator><creatorcontrib>Takemura, Y. ; Watanabe, K.Y. ; Sakakibara, S. ; Ohdachi, S. ; Narushima, Y. ; Ida, K. ; Yoshinuma, M. ; Tsuchiya, H. ; Tokuzawa, T. ; Yamada, I. ; the LHD Experimental Group</creatorcontrib><description>The mode slowing down mechanism of the locked-mode-like instability without a large magnetic island is investigated, based on the LHD experimental analysis. The mode frequency coincides with E  ×  B rotation frequency at the resonant surface and the slowing down is caused by two processes. One is the resonant surface moving to the small E  ×  B rotation frequency region and the other is the slowing down of the E  ×  B rotation frequency near the resonant surface. Both processes are almost the same as those of the locked-mode-like instability with a large magnetic island. The results suggest that the slowing down occurs even though the precursor does not have a large magnetic island. However, when the external RMP is imposed, the mode frequency in the slowing down phase sometimes does not coincide with the E  ×  B rotation frequency. Moreover, the mode amplitude during the slowing down phase increases with the decrease of the mode frequency both with and without the imposed external RMP, which suggests that the instability growth in the slowing down phase is more strongly related to the mode frequency than the E  ×  B rotation frequency because the mode sometimes does not rotate with the E  ×  B rotation.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab169f</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>external RMP ; LHD ; locked mode ; locked-mode-like instability ; low magnetic shear ; MHD instability ; mode rotation</subject><ispartof>Nuclear fusion, 2019-05, Vol.59 (6), p.66036</ispartof><rights>2019 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-ff2b74bb8dd87c6908058c7c0b6121ad38506bf39ab1676d787c8830530256463</citedby><cites>FETCH-LOGICAL-c463t-ff2b74bb8dd87c6908058c7c0b6121ad38506bf39ab1676d787c8830530256463</cites><orcidid>0000-0003-3754-897X ; 0000-0002-0585-4561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ab169f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Takemura, Y.</creatorcontrib><creatorcontrib>Watanabe, K.Y.</creatorcontrib><creatorcontrib>Sakakibara, S.</creatorcontrib><creatorcontrib>Ohdachi, S.</creatorcontrib><creatorcontrib>Narushima, Y.</creatorcontrib><creatorcontrib>Ida, K.</creatorcontrib><creatorcontrib>Yoshinuma, M.</creatorcontrib><creatorcontrib>Tsuchiya, H.</creatorcontrib><creatorcontrib>Tokuzawa, T.</creatorcontrib><creatorcontrib>Yamada, I.</creatorcontrib><creatorcontrib>the LHD Experimental Group</creatorcontrib><title>Study of slowing down mechanism of locked-mode-like instability in helical plasmas</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>The mode slowing down mechanism of the locked-mode-like instability without a large magnetic island is investigated, based on the LHD experimental analysis. The mode frequency coincides with E  ×  B rotation frequency at the resonant surface and the slowing down is caused by two processes. One is the resonant surface moving to the small E  ×  B rotation frequency region and the other is the slowing down of the E  ×  B rotation frequency near the resonant surface. Both processes are almost the same as those of the locked-mode-like instability with a large magnetic island. The results suggest that the slowing down occurs even though the precursor does not have a large magnetic island. However, when the external RMP is imposed, the mode frequency in the slowing down phase sometimes does not coincide with the E  ×  B rotation frequency. Moreover, the mode amplitude during the slowing down phase increases with the decrease of the mode frequency both with and without the imposed external RMP, which suggests that the instability growth in the slowing down phase is more strongly related to the mode frequency than the E  ×  B rotation frequency because the mode sometimes does not rotate with the E  ×  B rotation.</description><subject>external RMP</subject><subject>LHD</subject><subject>locked mode</subject><subject>locked-mode-like instability</subject><subject>low magnetic shear</subject><subject>MHD instability</subject><subject>mode rotation</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEqVw5-gTJ0LHcew4R1SxSZWQWM6W44W6deIoTlX135OoiBOcZjTz3tPMh9A1gTsCQixIWZCsoDlfqJrwyp2g2e_oFM0A8ipjjLBzdJHSBoAUhNIZensfduaAo8MpxL1vv7CJ-xY3Vq9V61MzbULUW2uyJhqbBb-12LdpULUPfjiMPV7b4LUKuAsqNSpdojOnQrJXP3WOPh8fPpbP2er16WV5v8p0wemQOZfXZVHXwhhRal6BACZ0qaHmJCfKUMGA145W0z8lN-WoEoICo5AzPkbMERxzdR9T6q2TXe8b1R8kATkxkRMAOQGQRyaj5eZo8bGTm7jr2_FA2TrJKsklcA6Uy85Mwts_hP_mfgPmmm9k</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Takemura, Y.</creator><creator>Watanabe, K.Y.</creator><creator>Sakakibara, S.</creator><creator>Ohdachi, S.</creator><creator>Narushima, Y.</creator><creator>Ida, K.</creator><creator>Yoshinuma, M.</creator><creator>Tsuchiya, H.</creator><creator>Tokuzawa, T.</creator><creator>Yamada, I.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3754-897X</orcidid><orcidid>https://orcid.org/0000-0002-0585-4561</orcidid></search><sort><creationdate>20190517</creationdate><title>Study of slowing down mechanism of locked-mode-like instability in helical plasmas</title><author>Takemura, Y. ; Watanabe, K.Y. ; Sakakibara, S. ; Ohdachi, S. ; Narushima, Y. ; Ida, K. ; Yoshinuma, M. ; Tsuchiya, H. ; Tokuzawa, T. ; Yamada, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-ff2b74bb8dd87c6908058c7c0b6121ad38506bf39ab1676d787c8830530256463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>external RMP</topic><topic>LHD</topic><topic>locked mode</topic><topic>locked-mode-like instability</topic><topic>low magnetic shear</topic><topic>MHD instability</topic><topic>mode rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takemura, Y.</creatorcontrib><creatorcontrib>Watanabe, K.Y.</creatorcontrib><creatorcontrib>Sakakibara, S.</creatorcontrib><creatorcontrib>Ohdachi, S.</creatorcontrib><creatorcontrib>Narushima, Y.</creatorcontrib><creatorcontrib>Ida, K.</creatorcontrib><creatorcontrib>Yoshinuma, M.</creatorcontrib><creatorcontrib>Tsuchiya, H.</creatorcontrib><creatorcontrib>Tokuzawa, T.</creatorcontrib><creatorcontrib>Yamada, I.</creatorcontrib><creatorcontrib>the LHD Experimental Group</creatorcontrib><collection>CrossRef</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takemura, Y.</au><au>Watanabe, K.Y.</au><au>Sakakibara, S.</au><au>Ohdachi, S.</au><au>Narushima, Y.</au><au>Ida, K.</au><au>Yoshinuma, M.</au><au>Tsuchiya, H.</au><au>Tokuzawa, T.</au><au>Yamada, I.</au><aucorp>the LHD Experimental Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of slowing down mechanism of locked-mode-like instability in helical plasmas</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2019-05-17</date><risdate>2019</risdate><volume>59</volume><issue>6</issue><spage>66036</spage><pages>66036-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>The mode slowing down mechanism of the locked-mode-like instability without a large magnetic island is investigated, based on the LHD experimental analysis. The mode frequency coincides with E  ×  B rotation frequency at the resonant surface and the slowing down is caused by two processes. One is the resonant surface moving to the small E  ×  B rotation frequency region and the other is the slowing down of the E  ×  B rotation frequency near the resonant surface. Both processes are almost the same as those of the locked-mode-like instability with a large magnetic island. The results suggest that the slowing down occurs even though the precursor does not have a large magnetic island. However, when the external RMP is imposed, the mode frequency in the slowing down phase sometimes does not coincide with the E  ×  B rotation frequency. Moreover, the mode amplitude during the slowing down phase increases with the decrease of the mode frequency both with and without the imposed external RMP, which suggests that the instability growth in the slowing down phase is more strongly related to the mode frequency than the E  ×  B rotation frequency because the mode sometimes does not rotate with the E  ×  B rotation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ab169f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3754-897X</orcidid><orcidid>https://orcid.org/0000-0002-0585-4561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2019-05, Vol.59 (6), p.66036
issn 0029-5515
1741-4326
language eng
recordid cdi_iop_journals_10_1088_1741_4326_ab169f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects external RMP
LHD
locked mode
locked-mode-like instability
low magnetic shear
MHD instability
mode rotation
title Study of slowing down mechanism of locked-mode-like instability in helical plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20slowing%20down%20mechanism%20of%20locked-mode-like%20instability%20in%20helical%20plasmas&rft.jtitle=Nuclear%20fusion&rft.au=Takemura,%20Y.&rft.aucorp=the%20LHD%20Experimental%20Group&rft.date=2019-05-17&rft.volume=59&rft.issue=6&rft.spage=66036&rft.pages=66036-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ab169f&rft_dat=%3Ciop_cross%3Enfab169f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true