Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game
Objective . The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer’s decision-making is a crucial issue. Yet the neural s...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2023-10, Vol.20 (5), p.56003 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 56003 |
container_title | Journal of neural engineering |
container_volume | 20 |
creator | Li, Yuqin Yang, Qian Liu, Yuxin Wang, Rui Zheng, Yutong Zhang, Yubo Si, Yajing Jiang, Lin Chen, Baodan Peng, Yueheng Wan, Feng Yu, Jing Yao, Dezhong Li, Fali He, Baoming Xu, Peng |
description | Objective
. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer’s decision-making is a crucial issue. Yet the neural substrate of the proposer’s decision behavior, especially from the resting-state network perspective, remains unclear.
Approach
. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers’ unfair offer rates in the ultimatum game.
Main results.
The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.
Significance
. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well. |
doi_str_mv | 10.1088/1741-2552/acf61e |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_2552_acf61e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860408331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-b8a2ce0b7d76fc9cd01d43af437623d33ccae5b5c6936776cbaa31f06d93f1ad3</originalsourceid><addsrcrecordid>eNp9kc1LxDAQxYMouK7ePeamB6tJ06bdoyx-wYIgeg5pMtntbtvUJFX8702t7Ek8zTD83vDmDULnlFxTUpY3tMhokuZ5eiOV4RQO0Gw_Otz3nByjE--3hDBaLMgMmRfwoe7WiQ8yAO4gfFq3w70DXavgcdgA1qBqX9suaeUuoriCjfyorfPYmh-gd7a3HhzWgxuBcTY0oW5lGFq8li2coiMjGw9nv3WO3u7vXpePyer54Wl5u0oUy_KQVKVMFZCq0AU3aqE0oTpj0mSs4CnTjCklIa9yxReMFwVXlZSMGsL1ghkqNZujy2lvtPQ-xNNEW3sFTSM7sIMXaclJRkrGaETJhCpnvXdgRO-iY_clKBFjpGLMTIz5iSnSKLmaJLXtxdYOrou3_Idf_IFvOxApEbkg8RuEiV4b9g1dQ4fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860408331</pqid></control><display><type>article</type><title>Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Li, Yuqin ; Yang, Qian ; Liu, Yuxin ; Wang, Rui ; Zheng, Yutong ; Zhang, Yubo ; Si, Yajing ; Jiang, Lin ; Chen, Baodan ; Peng, Yueheng ; Wan, Feng ; Yu, Jing ; Yao, Dezhong ; Li, Fali ; He, Baoming ; Xu, Peng</creator><creatorcontrib>Li, Yuqin ; Yang, Qian ; Liu, Yuxin ; Wang, Rui ; Zheng, Yutong ; Zhang, Yubo ; Si, Yajing ; Jiang, Lin ; Chen, Baodan ; Peng, Yueheng ; Wan, Feng ; Yu, Jing ; Yao, Dezhong ; Li, Fali ; He, Baoming ; Xu, Peng</creatorcontrib><description>Objective
. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer’s decision-making is a crucial issue. Yet the neural substrate of the proposer’s decision behavior, especially from the resting-state network perspective, remains unclear.
Approach
. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers’ unfair offer rates in the ultimatum game.
Main results.
The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.
Significance
. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.</description><identifier>ISSN: 1741-2560</identifier><identifier>ISSN: 1741-2552</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/acf61e</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>decision-making ; proposer ; resting-state network ; ultimatum game ; unfair offer rate</subject><ispartof>Journal of neural engineering, 2023-10, Vol.20 (5), p.56003</ispartof><rights>2023 IOP Publishing Ltd</rights><rights>2023 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-b8a2ce0b7d76fc9cd01d43af437623d33ccae5b5c6936776cbaa31f06d93f1ad3</citedby><cites>FETCH-LOGICAL-c345t-b8a2ce0b7d76fc9cd01d43af437623d33ccae5b5c6936776cbaa31f06d93f1ad3</cites><orcidid>0000-0001-9753-2617 ; 0000-0002-9359-0737 ; 0000-0002-7932-0386 ; 0000-0002-8042-879X ; 0000-0002-2450-4591 ; 0000-0002-7892-118X ; 0000-0002-4226-9281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/acf61e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Li, Yuqin</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zheng, Yutong</creatorcontrib><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Si, Yajing</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Chen, Baodan</creatorcontrib><creatorcontrib>Peng, Yueheng</creatorcontrib><creatorcontrib>Wan, Feng</creatorcontrib><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Yao, Dezhong</creatorcontrib><creatorcontrib>Li, Fali</creatorcontrib><creatorcontrib>He, Baoming</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><title>Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective
. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer’s decision-making is a crucial issue. Yet the neural substrate of the proposer’s decision behavior, especially from the resting-state network perspective, remains unclear.
Approach
. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers’ unfair offer rates in the ultimatum game.
Main results.
The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.
Significance
. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.</description><subject>decision-making</subject><subject>proposer</subject><subject>resting-state network</subject><subject>ultimatum game</subject><subject>unfair offer rate</subject><issn>1741-2560</issn><issn>1741-2552</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LxDAQxYMouK7ePeamB6tJ06bdoyx-wYIgeg5pMtntbtvUJFX8702t7Ek8zTD83vDmDULnlFxTUpY3tMhokuZ5eiOV4RQO0Gw_Otz3nByjE--3hDBaLMgMmRfwoe7WiQ8yAO4gfFq3w70DXavgcdgA1qBqX9suaeUuoriCjfyorfPYmh-gd7a3HhzWgxuBcTY0oW5lGFq8li2coiMjGw9nv3WO3u7vXpePyer54Wl5u0oUy_KQVKVMFZCq0AU3aqE0oTpj0mSs4CnTjCklIa9yxReMFwVXlZSMGsL1ghkqNZujy2lvtPQ-xNNEW3sFTSM7sIMXaclJRkrGaETJhCpnvXdgRO-iY_clKBFjpGLMTIz5iSnSKLmaJLXtxdYOrou3_Idf_IFvOxApEbkg8RuEiV4b9g1dQ4fg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Yuqin</creator><creator>Yang, Qian</creator><creator>Liu, Yuxin</creator><creator>Wang, Rui</creator><creator>Zheng, Yutong</creator><creator>Zhang, Yubo</creator><creator>Si, Yajing</creator><creator>Jiang, Lin</creator><creator>Chen, Baodan</creator><creator>Peng, Yueheng</creator><creator>Wan, Feng</creator><creator>Yu, Jing</creator><creator>Yao, Dezhong</creator><creator>Li, Fali</creator><creator>He, Baoming</creator><creator>Xu, Peng</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9753-2617</orcidid><orcidid>https://orcid.org/0000-0002-9359-0737</orcidid><orcidid>https://orcid.org/0000-0002-7932-0386</orcidid><orcidid>https://orcid.org/0000-0002-8042-879X</orcidid><orcidid>https://orcid.org/0000-0002-2450-4591</orcidid><orcidid>https://orcid.org/0000-0002-7892-118X</orcidid><orcidid>https://orcid.org/0000-0002-4226-9281</orcidid></search><sort><creationdate>20231001</creationdate><title>Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game</title><author>Li, Yuqin ; Yang, Qian ; Liu, Yuxin ; Wang, Rui ; Zheng, Yutong ; Zhang, Yubo ; Si, Yajing ; Jiang, Lin ; Chen, Baodan ; Peng, Yueheng ; Wan, Feng ; Yu, Jing ; Yao, Dezhong ; Li, Fali ; He, Baoming ; Xu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-b8a2ce0b7d76fc9cd01d43af437623d33ccae5b5c6936776cbaa31f06d93f1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>decision-making</topic><topic>proposer</topic><topic>resting-state network</topic><topic>ultimatum game</topic><topic>unfair offer rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuqin</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Zheng, Yutong</creatorcontrib><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Si, Yajing</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Chen, Baodan</creatorcontrib><creatorcontrib>Peng, Yueheng</creatorcontrib><creatorcontrib>Wan, Feng</creatorcontrib><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Yao, Dezhong</creatorcontrib><creatorcontrib>Li, Fali</creatorcontrib><creatorcontrib>He, Baoming</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuqin</au><au>Yang, Qian</au><au>Liu, Yuxin</au><au>Wang, Rui</au><au>Zheng, Yutong</au><au>Zhang, Yubo</au><au>Si, Yajing</au><au>Jiang, Lin</au><au>Chen, Baodan</au><au>Peng, Yueheng</au><au>Wan, Feng</au><au>Yu, Jing</au><au>Yao, Dezhong</au><au>Li, Fali</au><au>He, Baoming</au><au>Xu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>56003</spage><pages>56003-</pages><issn>1741-2560</issn><issn>1741-2552</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>Objective
. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer’s decision-making is a crucial issue. Yet the neural substrate of the proposer’s decision behavior, especially from the resting-state network perspective, remains unclear.
Approach
. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers’ unfair offer rates in the ultimatum game.
Main results.
The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.
Significance
. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-2552/acf61e</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9753-2617</orcidid><orcidid>https://orcid.org/0000-0002-9359-0737</orcidid><orcidid>https://orcid.org/0000-0002-7932-0386</orcidid><orcidid>https://orcid.org/0000-0002-8042-879X</orcidid><orcidid>https://orcid.org/0000-0002-2450-4591</orcidid><orcidid>https://orcid.org/0000-0002-7892-118X</orcidid><orcidid>https://orcid.org/0000-0002-4226-9281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2023-10, Vol.20 (5), p.56003 |
issn | 1741-2560 1741-2552 1741-2552 |
language | eng |
recordid | cdi_iop_journals_10_1088_1741_2552_acf61e |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | decision-making proposer resting-state network ultimatum game unfair offer rate |
title | Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resting-state%20network%20predicts%20the%20decision-making%20behaviors%20of%20the%20proposer%20during%20the%20ultimatum%20game&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Li,%20Yuqin&rft.date=2023-10-01&rft.volume=20&rft.issue=5&rft.spage=56003&rft.pages=56003-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/acf61e&rft_dat=%3Cproquest_iop_j%3E2860408331%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860408331&rft_id=info:pmid/&rfr_iscdi=true |