An in-silico analysis of retinal electric field distribution induced by different electrode design of trans-corneal electrical stimulation

Objective. Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2022-10, Vol.19 (5), p.55004
Hauptverfasser: Lu, Zhuofan, Zhou, Meixuan, Guo, Tianruo, Liang, Junling, Wu, Weilei, Gao, Qi, Li, Liming, Li, Heng, Chai, Xinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55004
container_title Journal of neural engineering
container_volume 19
creator Lu, Zhuofan
Zhou, Meixuan
Guo, Tianruo
Liang, Junling
Wu, Weilei
Gao, Qi
Li, Liming
Li, Heng
Chai, Xinyu
description Objective. Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradigms and stimulation parameters influence the electric field distribution on the retina, will be beneficial to the design of next-generation TcES devices. Approach. In this study, we constructed a realistic finite element human head model with fine eyeball structure. Commonly used DTL-Plus and ERG-Jet electrodes were simulated. We then conducted in silico investigations of retina observation surface (ROS) electric field distributions induced by different return electrode configuration paradigms and different stimulus intensities. Main results. Our results suggested that the ROS electric field distribution could be modulated by re-designing TcES electrode settings and stimulus parameters. Under far return location paradigms, either DTL-Plus or ERG-Jet approach could induce almost identical ROS electric field distribution regardless where the far return was located. However, compared with the ERG-Jet mode, DTL-Plus stimulation induced stronger nasal lateralization. In contrast, ERG-Jet stimulation induced relatively stronger temporal lateralization. The ROS lateralization can be further tweaked by changing the DTL-Plus electrode length. Significance. These results may contribute to the understanding of the characteristics of DTL-Plus and ERG-Jet electrodes based electric field distribution on the retina, providing practical implications for the therapeutic application of TcES.
doi_str_mv 10.1088/1741-2552/ac8e32
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_2552_ac8e32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jneac8e32</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-d4acf342387c1af0208392c70040c8de177f0f0f9e88c66a34ac7bd07c22d85c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l9m5cexNZqZJl6X4goIbXYc0uZGUaVKSmUX_gr_aDJXiQrmL--Cc78Ih5JbBAwMpZ0w0rOJty2faSKz5GZmcTueneQ6X5CrnLUDNxAIm5GsZqA9V9p03keqgu0P2mUZHE_a-rBQ7NH3yhjqPnaXW57Jtht7H0WkHg5ZuDuXuHCYM_Y8hWqQWs_8MI6xPOuTKxBTwF7KMufe7odMj7ZpcON1lvPnpU_Lx9Pi-eqnWb8-vq-W6MrzhfWUbbVzd8FoKw7QDDrJecCMAGjDSIhPCQakFSmnmc10XvdhYEIZzK1tTTwkcuSbFnBM6tU9-p9NBMVBjlmoMS43BqWOWxXJ3tPi4V9s4pBJMVtuAii1Uq6Bty3e1t64o7_9Q_gv-BkfUhkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An in-silico analysis of retinal electric field distribution induced by different electrode design of trans-corneal electrical stimulation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lu, Zhuofan ; Zhou, Meixuan ; Guo, Tianruo ; Liang, Junling ; Wu, Weilei ; Gao, Qi ; Li, Liming ; Li, Heng ; Chai, Xinyu</creator><creatorcontrib>Lu, Zhuofan ; Zhou, Meixuan ; Guo, Tianruo ; Liang, Junling ; Wu, Weilei ; Gao, Qi ; Li, Liming ; Li, Heng ; Chai, Xinyu</creatorcontrib><description>Objective. Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradigms and stimulation parameters influence the electric field distribution on the retina, will be beneficial to the design of next-generation TcES devices. Approach. In this study, we constructed a realistic finite element human head model with fine eyeball structure. Commonly used DTL-Plus and ERG-Jet electrodes were simulated. We then conducted in silico investigations of retina observation surface (ROS) electric field distributions induced by different return electrode configuration paradigms and different stimulus intensities. Main results. Our results suggested that the ROS electric field distribution could be modulated by re-designing TcES electrode settings and stimulus parameters. Under far return location paradigms, either DTL-Plus or ERG-Jet approach could induce almost identical ROS electric field distribution regardless where the far return was located. However, compared with the ERG-Jet mode, DTL-Plus stimulation induced stronger nasal lateralization. In contrast, ERG-Jet stimulation induced relatively stronger temporal lateralization. The ROS lateralization can be further tweaked by changing the DTL-Plus electrode length. Significance. These results may contribute to the understanding of the characteristics of DTL-Plus and ERG-Jet electrodes based electric field distribution on the retina, providing practical implications for the therapeutic application of TcES.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac8e32</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>computational modeling ; DTL-Plus electrode ; ERG-Jet electrode ; lateralization ; retinal electric field distribution ; trans-corneal electrical stimulation</subject><ispartof>Journal of neural engineering, 2022-10, Vol.19 (5), p.55004</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-d4acf342387c1af0208392c70040c8de177f0f0f9e88c66a34ac7bd07c22d85c3</citedby><cites>FETCH-LOGICAL-c242t-d4acf342387c1af0208392c70040c8de177f0f0f9e88c66a34ac7bd07c22d85c3</cites><orcidid>0000-0003-2702-665X ; 0000-0002-1303-8898 ; 0000-0001-6348-6771 ; 0000-0001-7783-5493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac8e32/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Lu, Zhuofan</creatorcontrib><creatorcontrib>Zhou, Meixuan</creatorcontrib><creatorcontrib>Guo, Tianruo</creatorcontrib><creatorcontrib>Liang, Junling</creatorcontrib><creatorcontrib>Wu, Weilei</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Chai, Xinyu</creatorcontrib><title>An in-silico analysis of retinal electric field distribution induced by different electrode design of trans-corneal electrical stimulation</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradigms and stimulation parameters influence the electric field distribution on the retina, will be beneficial to the design of next-generation TcES devices. Approach. In this study, we constructed a realistic finite element human head model with fine eyeball structure. Commonly used DTL-Plus and ERG-Jet electrodes were simulated. We then conducted in silico investigations of retina observation surface (ROS) electric field distributions induced by different return electrode configuration paradigms and different stimulus intensities. Main results. Our results suggested that the ROS electric field distribution could be modulated by re-designing TcES electrode settings and stimulus parameters. Under far return location paradigms, either DTL-Plus or ERG-Jet approach could induce almost identical ROS electric field distribution regardless where the far return was located. However, compared with the ERG-Jet mode, DTL-Plus stimulation induced stronger nasal lateralization. In contrast, ERG-Jet stimulation induced relatively stronger temporal lateralization. The ROS lateralization can be further tweaked by changing the DTL-Plus electrode length. Significance. These results may contribute to the understanding of the characteristics of DTL-Plus and ERG-Jet electrodes based electric field distribution on the retina, providing practical implications for the therapeutic application of TcES.</description><subject>computational modeling</subject><subject>DTL-Plus electrode</subject><subject>ERG-Jet electrode</subject><subject>lateralization</subject><subject>retinal electric field distribution</subject><subject>trans-corneal electrical stimulation</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l9m5cexNZqZJl6X4goIbXYc0uZGUaVKSmUX_gr_aDJXiQrmL--Cc78Ih5JbBAwMpZ0w0rOJty2faSKz5GZmcTueneQ6X5CrnLUDNxAIm5GsZqA9V9p03keqgu0P2mUZHE_a-rBQ7NH3yhjqPnaXW57Jtht7H0WkHg5ZuDuXuHCYM_Y8hWqQWs_8MI6xPOuTKxBTwF7KMufe7odMj7ZpcON1lvPnpU_Lx9Pi-eqnWb8-vq-W6MrzhfWUbbVzd8FoKw7QDDrJecCMAGjDSIhPCQakFSmnmc10XvdhYEIZzK1tTTwkcuSbFnBM6tU9-p9NBMVBjlmoMS43BqWOWxXJ3tPi4V9s4pBJMVtuAii1Uq6Bty3e1t64o7_9Q_gv-BkfUhkM</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lu, Zhuofan</creator><creator>Zhou, Meixuan</creator><creator>Guo, Tianruo</creator><creator>Liang, Junling</creator><creator>Wu, Weilei</creator><creator>Gao, Qi</creator><creator>Li, Liming</creator><creator>Li, Heng</creator><creator>Chai, Xinyu</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2702-665X</orcidid><orcidid>https://orcid.org/0000-0002-1303-8898</orcidid><orcidid>https://orcid.org/0000-0001-6348-6771</orcidid><orcidid>https://orcid.org/0000-0001-7783-5493</orcidid></search><sort><creationdate>20221001</creationdate><title>An in-silico analysis of retinal electric field distribution induced by different electrode design of trans-corneal electrical stimulation</title><author>Lu, Zhuofan ; Zhou, Meixuan ; Guo, Tianruo ; Liang, Junling ; Wu, Weilei ; Gao, Qi ; Li, Liming ; Li, Heng ; Chai, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-d4acf342387c1af0208392c70040c8de177f0f0f9e88c66a34ac7bd07c22d85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>computational modeling</topic><topic>DTL-Plus electrode</topic><topic>ERG-Jet electrode</topic><topic>lateralization</topic><topic>retinal electric field distribution</topic><topic>trans-corneal electrical stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zhuofan</creatorcontrib><creatorcontrib>Zhou, Meixuan</creatorcontrib><creatorcontrib>Guo, Tianruo</creatorcontrib><creatorcontrib>Liang, Junling</creatorcontrib><creatorcontrib>Wu, Weilei</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Chai, Xinyu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zhuofan</au><au>Zhou, Meixuan</au><au>Guo, Tianruo</au><au>Liang, Junling</au><au>Wu, Weilei</au><au>Gao, Qi</au><au>Li, Liming</au><au>Li, Heng</au><au>Chai, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An in-silico analysis of retinal electric field distribution induced by different electrode design of trans-corneal electrical stimulation</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>55004</spage><pages>55004-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>Objective. Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradigms and stimulation parameters influence the electric field distribution on the retina, will be beneficial to the design of next-generation TcES devices. Approach. In this study, we constructed a realistic finite element human head model with fine eyeball structure. Commonly used DTL-Plus and ERG-Jet electrodes were simulated. We then conducted in silico investigations of retina observation surface (ROS) electric field distributions induced by different return electrode configuration paradigms and different stimulus intensities. Main results. Our results suggested that the ROS electric field distribution could be modulated by re-designing TcES electrode settings and stimulus parameters. Under far return location paradigms, either DTL-Plus or ERG-Jet approach could induce almost identical ROS electric field distribution regardless where the far return was located. However, compared with the ERG-Jet mode, DTL-Plus stimulation induced stronger nasal lateralization. In contrast, ERG-Jet stimulation induced relatively stronger temporal lateralization. The ROS lateralization can be further tweaked by changing the DTL-Plus electrode length. Significance. These results may contribute to the understanding of the characteristics of DTL-Plus and ERG-Jet electrodes based electric field distribution on the retina, providing practical implications for the therapeutic application of TcES.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-2552/ac8e32</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2702-665X</orcidid><orcidid>https://orcid.org/0000-0002-1303-8898</orcidid><orcidid>https://orcid.org/0000-0001-6348-6771</orcidid><orcidid>https://orcid.org/0000-0001-7783-5493</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2022-10, Vol.19 (5), p.55004
issn 1741-2560
1741-2552
language eng
recordid cdi_iop_journals_10_1088_1741_2552_ac8e32
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects computational modeling
DTL-Plus electrode
ERG-Jet electrode
lateralization
retinal electric field distribution
trans-corneal electrical stimulation
title An in-silico analysis of retinal electric field distribution induced by different electrode design of trans-corneal electrical stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20in-silico%20analysis%20of%20retinal%20electric%20field%20distribution%20induced%20by%20different%20electrode%20design%20of%20trans-corneal%20electrical%20stimulation&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Lu,%20Zhuofan&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.spage=55004&rft.pages=55004-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ac8e32&rft_dat=%3Ciop_cross%3Ejneac8e32%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true