Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces
Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent re...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2019-08, Vol.16 (4), p.046004-046004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 046004 |
---|---|
container_issue | 4 |
container_start_page | 046004 |
container_title | Journal of neural engineering |
container_volume | 16 |
creator | Kiran Kumar, G R Ramasubba Reddy, M |
description | Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems. |
doi_str_mv | 10.1088/1741-2552/ab13d1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_2552_ab13d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199182639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq0KVCjtnRPyjR4asOM4iY8I0Q9pJSrR9mpNnDHyktjBTtrS39EfXC9L94S42J7xM6897xByzNkZZ217zpuKF6WU5Tl0XPT8FTncpfZ255odkDcprRkTvFHsNTkQTPFGVOqQ_F3BjH6mJoxj8DSFJRqk-HuOYGaXMz8dUKC36DHC4P5gTw344J2BIRfFiAM8cjbCiL9CvKM2xBzh_YLePNCIJtx698g4T29uflx9pR2kLNRFcL7IL0_LjDHf5tWCwfSW7FsYEr572o_I949X3y4_F6vrT18uL1aFEXU7F6K1vFOlVLKB3FjV2BaRSQWdrIzkiLY2irccFK9sjoSVraxtXzdNUxrRiSPyfqs7xZC_m2Y9umRwGMBjWJIuucr1ZS1URtkWNTGkFNHqKboR4oPmTG9moTdm643xejuLXHLypL50I_a7gv_mZ-DDFnBh0uvsvM_NvqR3-gy-9qh5rSvNqpqxSk-9Ff8AQdejUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199182639</pqid></control><display><type>article</type><title>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kiran Kumar, G R ; Ramasubba Reddy, M</creator><creatorcontrib>Kiran Kumar, G R ; Ramasubba Reddy, M</creatorcontrib><description>Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ab13d1</identifier><identifier>PMID: 30917349</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>brain-computer interface (BCI) ; electroencephalographic (EEG) ; latent common source extraction (LCSE) ; steady-state visual evoked potential (SSVEP)</subject><ispartof>Journal of neural engineering, 2019-08, Vol.16 (4), p.046004-046004</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</citedby><cites>FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</cites><orcidid>0000-0003-1871-2615 ; 0000-0003-3051-0266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ab13d1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30917349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiran Kumar, G R</creatorcontrib><creatorcontrib>Ramasubba Reddy, M</creatorcontrib><title>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.</description><subject>brain-computer interface (BCI)</subject><subject>electroencephalographic (EEG)</subject><subject>latent common source extraction (LCSE)</subject><subject>steady-state visual evoked potential (SSVEP)</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhq0KVCjtnRPyjR4asOM4iY8I0Q9pJSrR9mpNnDHyktjBTtrS39EfXC9L94S42J7xM6897xByzNkZZ217zpuKF6WU5Tl0XPT8FTncpfZ255odkDcprRkTvFHsNTkQTPFGVOqQ_F3BjH6mJoxj8DSFJRqk-HuOYGaXMz8dUKC36DHC4P5gTw344J2BIRfFiAM8cjbCiL9CvKM2xBzh_YLePNCIJtx698g4T29uflx9pR2kLNRFcL7IL0_LjDHf5tWCwfSW7FsYEr572o_I949X3y4_F6vrT18uL1aFEXU7F6K1vFOlVLKB3FjV2BaRSQWdrIzkiLY2irccFK9sjoSVraxtXzdNUxrRiSPyfqs7xZC_m2Y9umRwGMBjWJIuucr1ZS1URtkWNTGkFNHqKboR4oPmTG9moTdm643xejuLXHLypL50I_a7gv_mZ-DDFnBh0uvsvM_NvqR3-gy-9qh5rSvNqpqxSk-9Ff8AQdejUA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kiran Kumar, G R</creator><creator>Ramasubba Reddy, M</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1871-2615</orcidid><orcidid>https://orcid.org/0000-0003-3051-0266</orcidid></search><sort><creationdate>20190801</creationdate><title>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</title><author>Kiran Kumar, G R ; Ramasubba Reddy, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>brain-computer interface (BCI)</topic><topic>electroencephalographic (EEG)</topic><topic>latent common source extraction (LCSE)</topic><topic>steady-state visual evoked potential (SSVEP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiran Kumar, G R</creatorcontrib><creatorcontrib>Ramasubba Reddy, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiran Kumar, G R</au><au>Ramasubba Reddy, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>16</volume><issue>4</issue><spage>046004</spage><epage>046004</epage><pages>046004-046004</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30917349</pmid><doi>10.1088/1741-2552/ab13d1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1871-2615</orcidid><orcidid>https://orcid.org/0000-0003-3051-0266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2019-08, Vol.16 (4), p.046004-046004 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_iop_journals_10_1088_1741_2552_ab13d1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | brain-computer interface (BCI) electroencephalographic (EEG) latent common source extraction (LCSE) steady-state visual evoked potential (SSVEP) |
title | Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20common%20source%20extraction%20via%20a%20generalized%20canonical%20correlation%20framework%20for%20frequency%20recognition%20in%20SSVEP%20based%20brain-computer%20interfaces&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Kiran%20Kumar,%20G%20R&rft.date=2019-08-01&rft.volume=16&rft.issue=4&rft.spage=046004&rft.epage=046004&rft.pages=046004-046004&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ab13d1&rft_dat=%3Cproquest_iop_j%3E2199182639%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199182639&rft_id=info:pmid/30917349&rfr_iscdi=true |