Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces

Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2019-08, Vol.16 (4), p.046004-046004
Hauptverfasser: Kiran Kumar, G R, Ramasubba Reddy, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 046004
container_issue 4
container_start_page 046004
container_title Journal of neural engineering
container_volume 16
creator Kiran Kumar, G R
Ramasubba Reddy, M
description Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.
doi_str_mv 10.1088/1741-2552/ab13d1
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_2552_ab13d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199182639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq0KVCjtnRPyjR4asOM4iY8I0Q9pJSrR9mpNnDHyktjBTtrS39EfXC9L94S42J7xM6897xByzNkZZ217zpuKF6WU5Tl0XPT8FTncpfZ255odkDcprRkTvFHsNTkQTPFGVOqQ_F3BjH6mJoxj8DSFJRqk-HuOYGaXMz8dUKC36DHC4P5gTw344J2BIRfFiAM8cjbCiL9CvKM2xBzh_YLePNCIJtx698g4T29uflx9pR2kLNRFcL7IL0_LjDHf5tWCwfSW7FsYEr572o_I949X3y4_F6vrT18uL1aFEXU7F6K1vFOlVLKB3FjV2BaRSQWdrIzkiLY2irccFK9sjoSVraxtXzdNUxrRiSPyfqs7xZC_m2Y9umRwGMBjWJIuucr1ZS1URtkWNTGkFNHqKboR4oPmTG9moTdm643xejuLXHLypL50I_a7gv_mZ-DDFnBh0uvsvM_NvqR3-gy-9qh5rSvNqpqxSk-9Ff8AQdejUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199182639</pqid></control><display><type>article</type><title>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kiran Kumar, G R ; Ramasubba Reddy, M</creator><creatorcontrib>Kiran Kumar, G R ; Ramasubba Reddy, M</creatorcontrib><description>Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ab13d1</identifier><identifier>PMID: 30917349</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>brain-computer interface (BCI) ; electroencephalographic (EEG) ; latent common source extraction (LCSE) ; steady-state visual evoked potential (SSVEP)</subject><ispartof>Journal of neural engineering, 2019-08, Vol.16 (4), p.046004-046004</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</citedby><cites>FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</cites><orcidid>0000-0003-1871-2615 ; 0000-0003-3051-0266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ab13d1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30917349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiran Kumar, G R</creatorcontrib><creatorcontrib>Ramasubba Reddy, M</creatorcontrib><title>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.</description><subject>brain-computer interface (BCI)</subject><subject>electroencephalographic (EEG)</subject><subject>latent common source extraction (LCSE)</subject><subject>steady-state visual evoked potential (SSVEP)</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhq0KVCjtnRPyjR4asOM4iY8I0Q9pJSrR9mpNnDHyktjBTtrS39EfXC9L94S42J7xM6897xByzNkZZ217zpuKF6WU5Tl0XPT8FTncpfZ255odkDcprRkTvFHsNTkQTPFGVOqQ_F3BjH6mJoxj8DSFJRqk-HuOYGaXMz8dUKC36DHC4P5gTw344J2BIRfFiAM8cjbCiL9CvKM2xBzh_YLePNCIJtx698g4T29uflx9pR2kLNRFcL7IL0_LjDHf5tWCwfSW7FsYEr572o_I949X3y4_F6vrT18uL1aFEXU7F6K1vFOlVLKB3FjV2BaRSQWdrIzkiLY2irccFK9sjoSVraxtXzdNUxrRiSPyfqs7xZC_m2Y9umRwGMBjWJIuucr1ZS1URtkWNTGkFNHqKboR4oPmTG9moTdm643xejuLXHLypL50I_a7gv_mZ-DDFnBh0uvsvM_NvqR3-gy-9qh5rSvNqpqxSk-9Ff8AQdejUA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kiran Kumar, G R</creator><creator>Ramasubba Reddy, M</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1871-2615</orcidid><orcidid>https://orcid.org/0000-0003-3051-0266</orcidid></search><sort><creationdate>20190801</creationdate><title>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</title><author>Kiran Kumar, G R ; Ramasubba Reddy, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-38f1b925957a17947f8ee059ab54c51eef6c9181a914feef3f5856fd67772c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>brain-computer interface (BCI)</topic><topic>electroencephalographic (EEG)</topic><topic>latent common source extraction (LCSE)</topic><topic>steady-state visual evoked potential (SSVEP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiran Kumar, G R</creatorcontrib><creatorcontrib>Ramasubba Reddy, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiran Kumar, G R</au><au>Ramasubba Reddy, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>16</volume><issue>4</issue><spage>046004</spage><epage>046004</epage><pages>046004-046004</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. This study introduces and evaluates a novel target identification method, latent common source extraction (LCSE), that uses subject-specific training data for the enhancement of detection of steady-state visual evoked potential (SSVEP). Approach. LCSE seeks to construct a common latent representation of the SSVEP signal subspace that is stable across multiple trials of electroencephalographic (EEG) data. The spatial filter thus obtained improves the signal-to-noise ratio (SNR) of the SSVEP components by removing nuisance signals that are irrelevant to the generalized signal representation learnt from the given data. In this study a comparison of SSVEP identification performance between the proposed method, extended canonical correlation analysis (ExtCCA) and multiset canonical correlation analysis (MsetCCA) was conducted using SSVEP benchmark data of 40 targets recorded from 35 subjects to validate the effectiveness of the LCSE framework. Main results. The results indicate that the LCSE framework significantly outperforms the other two methods in terms of both classification accuracy and information transfer rates (ITRs). Significance. The significant improvement in the target identification performance demonstrates that the proposed LCSE method can be seen as a promising potential candidate for efficient SSVEP detection in brain-computer interface (BCI) systems.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30917349</pmid><doi>10.1088/1741-2552/ab13d1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1871-2615</orcidid><orcidid>https://orcid.org/0000-0003-3051-0266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2019-08, Vol.16 (4), p.046004-046004
issn 1741-2560
1741-2552
language eng
recordid cdi_iop_journals_10_1088_1741_2552_ab13d1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects brain-computer interface (BCI)
electroencephalographic (EEG)
latent common source extraction (LCSE)
steady-state visual evoked potential (SSVEP)
title Latent common source extraction via a generalized canonical correlation framework for frequency recognition in SSVEP based brain-computer interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20common%20source%20extraction%20via%20a%20generalized%20canonical%20correlation%20framework%20for%20frequency%20recognition%20in%20SSVEP%20based%20brain-computer%20interfaces&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Kiran%20Kumar,%20G%20R&rft.date=2019-08-01&rft.volume=16&rft.issue=4&rft.spage=046004&rft.epage=046004&rft.pages=046004-046004&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ab13d1&rft_dat=%3Cproquest_iop_j%3E2199182639%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199182639&rft_id=info:pmid/30917349&rfr_iscdi=true