Biophysically realistic neuron models for simulation of cortical stimulation

Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2018-12, Vol.15 (6), p.066023-066023
Hauptverfasser: Aberra, Aman S, Peterchev, Angel V, Grill, Warren M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 066023
container_issue 6
container_start_page 066023
container_title Journal of neural engineering
container_volume 15
creator Aberra, Aman S
Peterchev, Angel V
Grill, Warren M
description Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.
doi_str_mv 10.1088/1741-2552/aadbb1
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_2552_aadbb1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091240579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVJaT7ae0_Bt_SQzY4kW7IuhSQ0bWChl-QsZHnUaJGtrWQH9r-vzW6WFEJOEk-_90a8IeQrhSsKdb2ksqQLVlVsaUzbNPQDOTlIR4e7gGNymvMagFOp4BM55kCZpAAnZHXj4-Zpm701IWyLhCb4PHhb9Dim2BddbDHkwsVUZN-NwQx-UqMrbEzDbCom-kX_TD46EzJ-2Z9n5PHux8Ptr8Xq98_72-vVwlacDgtjeNlIEHUpa1HVpQJrjZEOHasdV8Ar2XJKEYWT2AiFFhpVtYpZbuoGkZ-R77vczdh02Frsh2SC3iTfmbTV0Xj9_0vvn_Sf-KwF40qVagr4tg9I8e-IedCdzxZDMD3GMWsGirISKjmjsENtijkndIcxFPS8BD23rOfG9W4Jk-X89fcOhpfWJ-ByB0zd63UcUz-19V7exRv4ukdNKy00CAGM603r-D_xZ6FO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091240579</pqid></control><display><type>article</type><title>Biophysically realistic neuron models for simulation of cortical stimulation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Aberra, Aman S ; Peterchev, Angel V ; Grill, Warren M</creator><creatorcontrib>Aberra, Aman S ; Peterchev, Angel V ; Grill, Warren M</creatorcontrib><description>Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/aadbb1</identifier><identifier>PMID: 30127100</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; Animals ; Axons - physiology ; Axons - ultrastructure ; Biophysics ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Computer Simulation ; cortex ; Dendrites - physiology ; Dendrites - ultrastructure ; electric field ; Electromagnetic Fields ; Humans ; Models, Neurological ; Myelin Sheath - physiology ; Myelin Sheath - ultrastructure ; myelination ; neuron model ; Neurons - physiology ; Presynaptic Terminals - physiology ; Presynaptic Terminals - ultrastructure ; Rats ; simulation ; stimulation</subject><ispartof>Journal of neural engineering, 2018-12, Vol.15 (6), p.066023-066023</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</citedby><cites>FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</cites><orcidid>0000-0002-4805-541X ; 0000-0002-4385-065X ; 0000-0001-5240-6588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/aadbb1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30127100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aberra, Aman S</creatorcontrib><creatorcontrib>Peterchev, Angel V</creatorcontrib><creatorcontrib>Grill, Warren M</creatorcontrib><title>Biophysically realistic neuron models for simulation of cortical stimulation</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.</description><subject>Adult</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Biophysics</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Computer Simulation</subject><subject>cortex</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>electric field</subject><subject>Electromagnetic Fields</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Myelin Sheath - physiology</subject><subject>Myelin Sheath - ultrastructure</subject><subject>myelination</subject><subject>neuron model</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>Rats</subject><subject>simulation</subject><subject>stimulation</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1r3DAQxUVJaT7ae0_Bt_SQzY4kW7IuhSQ0bWChl-QsZHnUaJGtrWQH9r-vzW6WFEJOEk-_90a8IeQrhSsKdb2ksqQLVlVsaUzbNPQDOTlIR4e7gGNymvMagFOp4BM55kCZpAAnZHXj4-Zpm701IWyLhCb4PHhb9Dim2BddbDHkwsVUZN-NwQx-UqMrbEzDbCom-kX_TD46EzJ-2Z9n5PHux8Ptr8Xq98_72-vVwlacDgtjeNlIEHUpa1HVpQJrjZEOHasdV8Ar2XJKEYWT2AiFFhpVtYpZbuoGkZ-R77vczdh02Frsh2SC3iTfmbTV0Xj9_0vvn_Sf-KwF40qVagr4tg9I8e-IedCdzxZDMD3GMWsGirISKjmjsENtijkndIcxFPS8BD23rOfG9W4Jk-X89fcOhpfWJ-ByB0zd63UcUz-19V7exRv4ukdNKy00CAGM603r-D_xZ6FO</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Aberra, Aman S</creator><creator>Peterchev, Angel V</creator><creator>Grill, Warren M</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4805-541X</orcidid><orcidid>https://orcid.org/0000-0002-4385-065X</orcidid><orcidid>https://orcid.org/0000-0001-5240-6588</orcidid></search><sort><creationdate>20181201</creationdate><title>Biophysically realistic neuron models for simulation of cortical stimulation</title><author>Aberra, Aman S ; Peterchev, Angel V ; Grill, Warren M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Biophysics</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Computer Simulation</topic><topic>cortex</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>electric field</topic><topic>Electromagnetic Fields</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Myelin Sheath - physiology</topic><topic>Myelin Sheath - ultrastructure</topic><topic>myelination</topic><topic>neuron model</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>Rats</topic><topic>simulation</topic><topic>stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aberra, Aman S</creatorcontrib><creatorcontrib>Peterchev, Angel V</creatorcontrib><creatorcontrib>Grill, Warren M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aberra, Aman S</au><au>Peterchev, Angel V</au><au>Grill, Warren M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysically realistic neuron models for simulation of cortical stimulation</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>066023</spage><epage>066023</epage><pages>066023-066023</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30127100</pmid><doi>10.1088/1741-2552/aadbb1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4805-541X</orcidid><orcidid>https://orcid.org/0000-0002-4385-065X</orcidid><orcidid>https://orcid.org/0000-0001-5240-6588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2018-12, Vol.15 (6), p.066023-066023
issn 1741-2560
1741-2552
language eng
recordid cdi_iop_journals_10_1088_1741_2552_aadbb1
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Adult
Animals
Axons - physiology
Axons - ultrastructure
Biophysics
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Computer Simulation
cortex
Dendrites - physiology
Dendrites - ultrastructure
electric field
Electromagnetic Fields
Humans
Models, Neurological
Myelin Sheath - physiology
Myelin Sheath - ultrastructure
myelination
neuron model
Neurons - physiology
Presynaptic Terminals - physiology
Presynaptic Terminals - ultrastructure
Rats
simulation
stimulation
title Biophysically realistic neuron models for simulation of cortical stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysically%20realistic%20neuron%20models%20for%20simulation%20of%20cortical%20stimulation&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Aberra,%20Aman%20S&rft.date=2018-12-01&rft.volume=15&rft.issue=6&rft.spage=066023&rft.epage=066023&rft.pages=066023-066023&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/aadbb1&rft_dat=%3Cproquest_iop_j%3E2091240579%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091240579&rft_id=info:pmid/30127100&rfr_iscdi=true