Biophysically realistic neuron models for simulation of cortical stimulation
Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both ad...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2018-12, Vol.15 (6), p.066023-066023 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 066023 |
---|---|
container_issue | 6 |
container_start_page | 066023 |
container_title | Journal of neural engineering |
container_volume | 15 |
creator | Aberra, Aman S Peterchev, Angel V Grill, Warren M |
description | Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field. |
doi_str_mv | 10.1088/1741-2552/aadbb1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1741_2552_aadbb1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091240579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVJaT7ae0_Bt_SQzY4kW7IuhSQ0bWChl-QsZHnUaJGtrWQH9r-vzW6WFEJOEk-_90a8IeQrhSsKdb2ksqQLVlVsaUzbNPQDOTlIR4e7gGNymvMagFOp4BM55kCZpAAnZHXj4-Zpm701IWyLhCb4PHhb9Dim2BddbDHkwsVUZN-NwQx-UqMrbEzDbCom-kX_TD46EzJ-2Z9n5PHux8Ptr8Xq98_72-vVwlacDgtjeNlIEHUpa1HVpQJrjZEOHasdV8Ar2XJKEYWT2AiFFhpVtYpZbuoGkZ-R77vczdh02Frsh2SC3iTfmbTV0Xj9_0vvn_Sf-KwF40qVagr4tg9I8e-IedCdzxZDMD3GMWsGirISKjmjsENtijkndIcxFPS8BD23rOfG9W4Jk-X89fcOhpfWJ-ByB0zd63UcUz-19V7exRv4ukdNKy00CAGM603r-D_xZ6FO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091240579</pqid></control><display><type>article</type><title>Biophysically realistic neuron models for simulation of cortical stimulation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Aberra, Aman S ; Peterchev, Angel V ; Grill, Warren M</creator><creatorcontrib>Aberra, Aman S ; Peterchev, Angel V ; Grill, Warren M</creatorcontrib><description>Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/aadbb1</identifier><identifier>PMID: 30127100</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; Animals ; Axons - physiology ; Axons - ultrastructure ; Biophysics ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Computer Simulation ; cortex ; Dendrites - physiology ; Dendrites - ultrastructure ; electric field ; Electromagnetic Fields ; Humans ; Models, Neurological ; Myelin Sheath - physiology ; Myelin Sheath - ultrastructure ; myelination ; neuron model ; Neurons - physiology ; Presynaptic Terminals - physiology ; Presynaptic Terminals - ultrastructure ; Rats ; simulation ; stimulation</subject><ispartof>Journal of neural engineering, 2018-12, Vol.15 (6), p.066023-066023</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</citedby><cites>FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</cites><orcidid>0000-0002-4805-541X ; 0000-0002-4385-065X ; 0000-0001-5240-6588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/aadbb1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30127100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aberra, Aman S</creatorcontrib><creatorcontrib>Peterchev, Angel V</creatorcontrib><creatorcontrib>Grill, Warren M</creatorcontrib><title>Biophysically realistic neuron models for simulation of cortical stimulation</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.</description><subject>Adult</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Axons - ultrastructure</subject><subject>Biophysics</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Computer Simulation</subject><subject>cortex</subject><subject>Dendrites - physiology</subject><subject>Dendrites - ultrastructure</subject><subject>electric field</subject><subject>Electromagnetic Fields</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Myelin Sheath - physiology</subject><subject>Myelin Sheath - ultrastructure</subject><subject>myelination</subject><subject>neuron model</subject><subject>Neurons - physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>Rats</subject><subject>simulation</subject><subject>stimulation</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1r3DAQxUVJaT7ae0_Bt_SQzY4kW7IuhSQ0bWChl-QsZHnUaJGtrWQH9r-vzW6WFEJOEk-_90a8IeQrhSsKdb2ksqQLVlVsaUzbNPQDOTlIR4e7gGNymvMagFOp4BM55kCZpAAnZHXj4-Zpm701IWyLhCb4PHhb9Dim2BddbDHkwsVUZN-NwQx-UqMrbEzDbCom-kX_TD46EzJ-2Z9n5PHux8Ptr8Xq98_72-vVwlacDgtjeNlIEHUpa1HVpQJrjZEOHasdV8Ar2XJKEYWT2AiFFhpVtYpZbuoGkZ-R77vczdh02Frsh2SC3iTfmbTV0Xj9_0vvn_Sf-KwF40qVagr4tg9I8e-IedCdzxZDMD3GMWsGirISKjmjsENtijkndIcxFPS8BD23rOfG9W4Jk-X89fcOhpfWJ-ByB0zd63UcUz-19V7exRv4ukdNKy00CAGM603r-D_xZ6FO</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Aberra, Aman S</creator><creator>Peterchev, Angel V</creator><creator>Grill, Warren M</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4805-541X</orcidid><orcidid>https://orcid.org/0000-0002-4385-065X</orcidid><orcidid>https://orcid.org/0000-0001-5240-6588</orcidid></search><sort><creationdate>20181201</creationdate><title>Biophysically realistic neuron models for simulation of cortical stimulation</title><author>Aberra, Aman S ; Peterchev, Angel V ; Grill, Warren M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-aa34b7068478658490ccaa7fef28f390357d311ee6f7eb69ec0b95d92c3a8bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Axons - ultrastructure</topic><topic>Biophysics</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Computer Simulation</topic><topic>cortex</topic><topic>Dendrites - physiology</topic><topic>Dendrites - ultrastructure</topic><topic>electric field</topic><topic>Electromagnetic Fields</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Myelin Sheath - physiology</topic><topic>Myelin Sheath - ultrastructure</topic><topic>myelination</topic><topic>neuron model</topic><topic>Neurons - physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>Rats</topic><topic>simulation</topic><topic>stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aberra, Aman S</creatorcontrib><creatorcontrib>Peterchev, Angel V</creatorcontrib><creatorcontrib>Grill, Warren M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aberra, Aman S</au><au>Peterchev, Angel V</au><au>Grill, Warren M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysically realistic neuron models for simulation of cortical stimulation</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>066023</spage><epage>066023</epage><pages>066023-066023</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types. Using these models, we characterized the single-cell responses to intracortical microstimulation (ICMS) and uniform E-field with dc as well as pulsed currents. Main results. The strength-duration and current-distance characteristics of the model neurons to ICMS agreed with published experimental results, as did the subthreshold polarization of cell bodies and axon terminals by uniform dc E-fields. For all forms of stimulation, the lowest threshold elements were terminals of the axon collaterals, and the dependence of threshold and polarization on spatial and temporal stimulation parameters was strongly affected by morphological features of the axonal arbor, including myelination, diameter, and branching. Significance. These results provide key insights into the mechanisms of cortical stimulation. The presented models can be used to study various cortical stimulation modalities while incorporating detailed spatial and temporal features of the applied E-field.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30127100</pmid><doi>10.1088/1741-2552/aadbb1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4805-541X</orcidid><orcidid>https://orcid.org/0000-0002-4385-065X</orcidid><orcidid>https://orcid.org/0000-0001-5240-6588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2018-12, Vol.15 (6), p.066023-066023 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_iop_journals_10_1088_1741_2552_aadbb1 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Adult Animals Axons - physiology Axons - ultrastructure Biophysics Cerebral Cortex - cytology Cerebral Cortex - physiology Computer Simulation cortex Dendrites - physiology Dendrites - ultrastructure electric field Electromagnetic Fields Humans Models, Neurological Myelin Sheath - physiology Myelin Sheath - ultrastructure myelination neuron model Neurons - physiology Presynaptic Terminals - physiology Presynaptic Terminals - ultrastructure Rats simulation stimulation |
title | Biophysically realistic neuron models for simulation of cortical stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysically%20realistic%20neuron%20models%20for%20simulation%20of%20cortical%20stimulation&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Aberra,%20Aman%20S&rft.date=2018-12-01&rft.volume=15&rft.issue=6&rft.spage=066023&rft.epage=066023&rft.pages=066023-066023&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/aadbb1&rft_dat=%3Cproquest_iop_j%3E2091240579%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091240579&rft_id=info:pmid/30127100&rfr_iscdi=true |