Practical realisation of the kelvin by Johnson noise thermometry

Johnson noise thermometry (JNT) is a purely electronic method of thermodynamic thermometry. In primary JNT, the temperature is inferred from a comparison of the Johnson noise voltage of a resistor at the unknown temperature with a pseudo-random noise synthesized by a quantum-based voltage-noise sour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metrologia 2024-04, Vol.61 (2), p.22001
Hauptverfasser: Benz, Samuel P, Coakley, Kevin J, Flowers-Jacobs, Nathan E, Rogalla, Horst, Tew, Weston L, Qu, Jifeng, White, D Rod, Gaiser, Christof, Pollarolo, Alessio, Urano, Chiharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22001
container_title Metrologia
container_volume 61
creator Benz, Samuel P
Coakley, Kevin J
Flowers-Jacobs, Nathan E
Rogalla, Horst
Tew, Weston L
Qu, Jifeng
White, D Rod
Gaiser, Christof
Pollarolo, Alessio
Urano, Chiharu
description Johnson noise thermometry (JNT) is a purely electronic method of thermodynamic thermometry. In primary JNT, the temperature is inferred from a comparison of the Johnson noise voltage of a resistor at the unknown temperature with a pseudo-random noise synthesized by a quantum-based voltage-noise source (QVNS). The advantages of the method are that it relies entirely on electronic measurements, and it can be used over a wide range of temperatures due to the ability of the QVNS to generate programmable, scalable, and accurate reference signals. The disadvantages are the requirement of cryogenic operation of the QVNS, the need to match the frequency responses of the leads of the sense resistor and the QVNS, and long measurement times. This review collates advice on current best practice for a primary JNT based on the switched correlator and QVNS. The method achieves an uncertainty of about 1 mK near 300 K and is suited to operation between 4 K and 1000 K.
doi_str_mv 10.1088/1681-7575/ad2273
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1681_7575_ad2273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927463149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b572807ecb9d7ad989f4fd3381979a4fb85ce7691be4766070596470005a273d3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePRa8WneSNJnkpix-sqAHPYe0Tdms3WZNqrD_3paKnjwNzPsxzEPIOYUrCkotqFQ0R4FiYWvGkB-Q2e_qkMwAmMwp18UxOUlpA0CRCZyR65doq95Xts2is61Ptvehy0KT9WuXvbv2y3dZuc-ewrpLg9AFn9yoxW3Yuj7uT8lRY9vkzn7mnLzd3b4uH_LV8_3j8maVVxx4n5cCmQJ0ValrtLVWuimamnNFNWpbNKUSlUOpaekKlBIQhJYFAoCwwzc1n5OLqXcXw8enS73ZhM_YDScN0wwLyWmhBxdMriqGlKJrzC76rY17Q8GMnMwIxYxQzMRpiFxOER92f53_2r8BoWpncw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927463149</pqid></control><display><type>article</type><title>Practical realisation of the kelvin by Johnson noise thermometry</title><source>Institute of Physics Journals</source><creator>Benz, Samuel P ; Coakley, Kevin J ; Flowers-Jacobs, Nathan E ; Rogalla, Horst ; Tew, Weston L ; Qu, Jifeng ; White, D Rod ; Gaiser, Christof ; Pollarolo, Alessio ; Urano, Chiharu</creator><creatorcontrib>Benz, Samuel P ; Coakley, Kevin J ; Flowers-Jacobs, Nathan E ; Rogalla, Horst ; Tew, Weston L ; Qu, Jifeng ; White, D Rod ; Gaiser, Christof ; Pollarolo, Alessio ; Urano, Chiharu</creatorcontrib><description>Johnson noise thermometry (JNT) is a purely electronic method of thermodynamic thermometry. In primary JNT, the temperature is inferred from a comparison of the Johnson noise voltage of a resistor at the unknown temperature with a pseudo-random noise synthesized by a quantum-based voltage-noise source (QVNS). The advantages of the method are that it relies entirely on electronic measurements, and it can be used over a wide range of temperatures due to the ability of the QVNS to generate programmable, scalable, and accurate reference signals. The disadvantages are the requirement of cryogenic operation of the QVNS, the need to match the frequency responses of the leads of the sense resistor and the QVNS, and long measurement times. This review collates advice on current best practice for a primary JNT based on the switched correlator and QVNS. The method achieves an uncertainty of about 1 mK near 300 K and is suited to operation between 4 K and 1000 K.</description><identifier>ISSN: 0026-1394</identifier><identifier>EISSN: 1681-7575</identifier><identifier>DOI: 10.1088/1681-7575/ad2273</identifier><identifier>CODEN: MTRGAU</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Best practice ; Electric potential ; international system of units ; Johnson noise ; Josephson effect ; Mise en Pratique for the kelvin ; Pseudorandom ; Random noise ; Reference signals ; Resistors ; Thermal noise ; thermodynamic temperature ; Thermometry ; Voltage</subject><ispartof>Metrologia, 2024-04, Vol.61 (2), p.22001</ispartof><rights>2024 The Author(s). Published on behalf of BIPM by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published on behalf of BIPM by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b572807ecb9d7ad989f4fd3381979a4fb85ce7691be4766070596470005a273d3</cites><orcidid>0000-0002-9979-9136 ; 0000-0002-9081-5187 ; 0000-0002-2026-9184 ; 0000-0002-8156-7943 ; 0000-0003-1745-7368 ; 0000-0002-7501-9289 ; 0000-0002-8679-0765 ; 0000-0003-3787-2577 ; 0000-0002-7581-2009 ; 0000-0003-3946-0891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1681-7575/ad2273/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Benz, Samuel P</creatorcontrib><creatorcontrib>Coakley, Kevin J</creatorcontrib><creatorcontrib>Flowers-Jacobs, Nathan E</creatorcontrib><creatorcontrib>Rogalla, Horst</creatorcontrib><creatorcontrib>Tew, Weston L</creatorcontrib><creatorcontrib>Qu, Jifeng</creatorcontrib><creatorcontrib>White, D Rod</creatorcontrib><creatorcontrib>Gaiser, Christof</creatorcontrib><creatorcontrib>Pollarolo, Alessio</creatorcontrib><creatorcontrib>Urano, Chiharu</creatorcontrib><title>Practical realisation of the kelvin by Johnson noise thermometry</title><title>Metrologia</title><addtitle>MET</addtitle><addtitle>Metrologia</addtitle><description>Johnson noise thermometry (JNT) is a purely electronic method of thermodynamic thermometry. In primary JNT, the temperature is inferred from a comparison of the Johnson noise voltage of a resistor at the unknown temperature with a pseudo-random noise synthesized by a quantum-based voltage-noise source (QVNS). The advantages of the method are that it relies entirely on electronic measurements, and it can be used over a wide range of temperatures due to the ability of the QVNS to generate programmable, scalable, and accurate reference signals. The disadvantages are the requirement of cryogenic operation of the QVNS, the need to match the frequency responses of the leads of the sense resistor and the QVNS, and long measurement times. This review collates advice on current best practice for a primary JNT based on the switched correlator and QVNS. The method achieves an uncertainty of about 1 mK near 300 K and is suited to operation between 4 K and 1000 K.</description><subject>Best practice</subject><subject>Electric potential</subject><subject>international system of units</subject><subject>Johnson noise</subject><subject>Josephson effect</subject><subject>Mise en Pratique for the kelvin</subject><subject>Pseudorandom</subject><subject>Random noise</subject><subject>Reference signals</subject><subject>Resistors</subject><subject>Thermal noise</subject><subject>thermodynamic temperature</subject><subject>Thermometry</subject><subject>Voltage</subject><issn>0026-1394</issn><issn>1681-7575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1LxDAQhoMouK7ePRa8WneSNJnkpix-sqAHPYe0Tdms3WZNqrD_3paKnjwNzPsxzEPIOYUrCkotqFQ0R4FiYWvGkB-Q2e_qkMwAmMwp18UxOUlpA0CRCZyR65doq95Xts2is61Ptvehy0KT9WuXvbv2y3dZuc-ewrpLg9AFn9yoxW3Yuj7uT8lRY9vkzn7mnLzd3b4uH_LV8_3j8maVVxx4n5cCmQJ0ValrtLVWuimamnNFNWpbNKUSlUOpaekKlBIQhJYFAoCwwzc1n5OLqXcXw8enS73ZhM_YDScN0wwLyWmhBxdMriqGlKJrzC76rY17Q8GMnMwIxYxQzMRpiFxOER92f53_2r8BoWpncw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Benz, Samuel P</creator><creator>Coakley, Kevin J</creator><creator>Flowers-Jacobs, Nathan E</creator><creator>Rogalla, Horst</creator><creator>Tew, Weston L</creator><creator>Qu, Jifeng</creator><creator>White, D Rod</creator><creator>Gaiser, Christof</creator><creator>Pollarolo, Alessio</creator><creator>Urano, Chiharu</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9979-9136</orcidid><orcidid>https://orcid.org/0000-0002-9081-5187</orcidid><orcidid>https://orcid.org/0000-0002-2026-9184</orcidid><orcidid>https://orcid.org/0000-0002-8156-7943</orcidid><orcidid>https://orcid.org/0000-0003-1745-7368</orcidid><orcidid>https://orcid.org/0000-0002-7501-9289</orcidid><orcidid>https://orcid.org/0000-0002-8679-0765</orcidid><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid><orcidid>https://orcid.org/0000-0002-7581-2009</orcidid><orcidid>https://orcid.org/0000-0003-3946-0891</orcidid></search><sort><creationdate>20240401</creationdate><title>Practical realisation of the kelvin by Johnson noise thermometry</title><author>Benz, Samuel P ; Coakley, Kevin J ; Flowers-Jacobs, Nathan E ; Rogalla, Horst ; Tew, Weston L ; Qu, Jifeng ; White, D Rod ; Gaiser, Christof ; Pollarolo, Alessio ; Urano, Chiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b572807ecb9d7ad989f4fd3381979a4fb85ce7691be4766070596470005a273d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Best practice</topic><topic>Electric potential</topic><topic>international system of units</topic><topic>Johnson noise</topic><topic>Josephson effect</topic><topic>Mise en Pratique for the kelvin</topic><topic>Pseudorandom</topic><topic>Random noise</topic><topic>Reference signals</topic><topic>Resistors</topic><topic>Thermal noise</topic><topic>thermodynamic temperature</topic><topic>Thermometry</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benz, Samuel P</creatorcontrib><creatorcontrib>Coakley, Kevin J</creatorcontrib><creatorcontrib>Flowers-Jacobs, Nathan E</creatorcontrib><creatorcontrib>Rogalla, Horst</creatorcontrib><creatorcontrib>Tew, Weston L</creatorcontrib><creatorcontrib>Qu, Jifeng</creatorcontrib><creatorcontrib>White, D Rod</creatorcontrib><creatorcontrib>Gaiser, Christof</creatorcontrib><creatorcontrib>Pollarolo, Alessio</creatorcontrib><creatorcontrib>Urano, Chiharu</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Metrologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benz, Samuel P</au><au>Coakley, Kevin J</au><au>Flowers-Jacobs, Nathan E</au><au>Rogalla, Horst</au><au>Tew, Weston L</au><au>Qu, Jifeng</au><au>White, D Rod</au><au>Gaiser, Christof</au><au>Pollarolo, Alessio</au><au>Urano, Chiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical realisation of the kelvin by Johnson noise thermometry</atitle><jtitle>Metrologia</jtitle><stitle>MET</stitle><addtitle>Metrologia</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>61</volume><issue>2</issue><spage>22001</spage><pages>22001-</pages><issn>0026-1394</issn><eissn>1681-7575</eissn><coden>MTRGAU</coden><abstract>Johnson noise thermometry (JNT) is a purely electronic method of thermodynamic thermometry. In primary JNT, the temperature is inferred from a comparison of the Johnson noise voltage of a resistor at the unknown temperature with a pseudo-random noise synthesized by a quantum-based voltage-noise source (QVNS). The advantages of the method are that it relies entirely on electronic measurements, and it can be used over a wide range of temperatures due to the ability of the QVNS to generate programmable, scalable, and accurate reference signals. The disadvantages are the requirement of cryogenic operation of the QVNS, the need to match the frequency responses of the leads of the sense resistor and the QVNS, and long measurement times. This review collates advice on current best practice for a primary JNT based on the switched correlator and QVNS. The method achieves an uncertainty of about 1 mK near 300 K and is suited to operation between 4 K and 1000 K.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1681-7575/ad2273</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-9979-9136</orcidid><orcidid>https://orcid.org/0000-0002-9081-5187</orcidid><orcidid>https://orcid.org/0000-0002-2026-9184</orcidid><orcidid>https://orcid.org/0000-0002-8156-7943</orcidid><orcidid>https://orcid.org/0000-0003-1745-7368</orcidid><orcidid>https://orcid.org/0000-0002-7501-9289</orcidid><orcidid>https://orcid.org/0000-0002-8679-0765</orcidid><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid><orcidid>https://orcid.org/0000-0002-7581-2009</orcidid><orcidid>https://orcid.org/0000-0003-3946-0891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-1394
ispartof Metrologia, 2024-04, Vol.61 (2), p.22001
issn 0026-1394
1681-7575
language eng
recordid cdi_iop_journals_10_1088_1681_7575_ad2273
source Institute of Physics Journals
subjects Best practice
Electric potential
international system of units
Johnson noise
Josephson effect
Mise en Pratique for the kelvin
Pseudorandom
Random noise
Reference signals
Resistors
Thermal noise
thermodynamic temperature
Thermometry
Voltage
title Practical realisation of the kelvin by Johnson noise thermometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20realisation%20of%20the%20kelvin%20by%20Johnson%20noise%20thermometry&rft.jtitle=Metrologia&rft.au=Benz,%20Samuel%20P&rft.date=2024-04-01&rft.volume=61&rft.issue=2&rft.spage=22001&rft.pages=22001-&rft.issn=0026-1394&rft.eissn=1681-7575&rft.coden=MTRGAU&rft_id=info:doi/10.1088/1681-7575/ad2273&rft_dat=%3Cproquest_iop_j%3E2927463149%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927463149&rft_id=info:pmid/&rfr_iscdi=true