Searching For (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation

A novel (2+1)-dimensional nonlinear Boussinesq equation is derived from a (1+1)-dimensional Boussinesq equation in nonlinear Schrödinger type based on a deformation algorithm. The integrability of the obtained (2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in theoretical physics 2023-07, Vol.75 (7), p.75006
Hauptverfasser: Jia, Man, Lou, S Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75006
container_title Communications in theoretical physics
container_volume 75
creator Jia, Man
Lou, S Y
description A novel (2+1)-dimensional nonlinear Boussinesq equation is derived from a (1+1)-dimensional Boussinesq equation in nonlinear Schrödinger type based on a deformation algorithm. The integrability of the obtained (2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from the Lax pair of the (1+1)-dimensional Boussinesq equation. Because of the effects of the deformation, the (2+1)-dimensional Boussinesq equation admits a special travelling wave solution with a shape that can be deformed to be asymmetric and/or multi-valued.
doi_str_mv 10.1088/1572-9494/acd99b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1572_9494_acd99b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ctpacd99b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-598c1cd0ce7edae7f32f0739e677fbc53cb36690957f351061f3cba8fdab3d3</originalsourceid><addsrcrecordid>eNqVkE1LAzEQhoMoWKt3j7lZ0bWTpEk2Ry1WhYKHeg_ZfOiWdrNN2oP_3pSKJxE8zfB-DMyD0CWBOwJ1PSZc0kpN1GRsrFOqOUKDH-kYDYByVgkC9BSd5bwEACoFGaC08CbZj7Z7x7OY8IjekOvKtWvf5TZ2ZoW72K3aroTwQ9zlXNa8wX6zM9vi45DiGo_Iv0rn6CSYVfYX33OIFrPHt-lzNX99epnezyvLCN1WXNWWWAfWS--Ml4HRAJIpL6QMjeXMNkwIBYoXixMQJBTJ1MGZhjk2RHC4alPMOfmg-9SuTfrUBPSemN7j0Xs8-kCsVG4PlTb2ehl3qbyS_4pf_RK3215LrqUGyQGE7l1gX-OffJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Searching For (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Jia, Man ; Lou, S Y</creator><creatorcontrib>Jia, Man ; Lou, S Y</creatorcontrib><description>A novel (2+1)-dimensional nonlinear Boussinesq equation is derived from a (1+1)-dimensional Boussinesq equation in nonlinear Schrödinger type based on a deformation algorithm. The integrability of the obtained (2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from the Lax pair of the (1+1)-dimensional Boussinesq equation. Because of the effects of the deformation, the (2+1)-dimensional Boussinesq equation admits a special travelling wave solution with a shape that can be deformed to be asymmetric and/or multi-valued.</description><identifier>ISSN: 0253-6102</identifier><identifier>EISSN: 1572-9494</identifier><identifier>DOI: 10.1088/1572-9494/acd99b</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>(2+1)-dimensional Boussinesq equation ; an implicit travelling wave solution ; deformation algorithm ; lax integrable</subject><ispartof>Communications in theoretical physics, 2023-07, Vol.75 (7), p.75006</ispartof><rights>2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-598c1cd0ce7edae7f32f0739e677fbc53cb36690957f351061f3cba8fdab3d3</citedby><cites>FETCH-LOGICAL-c312t-598c1cd0ce7edae7f32f0739e677fbc53cb36690957f351061f3cba8fdab3d3</cites><orcidid>0000-0002-9208-3450 ; 0000-0002-0766-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1572-9494/acd99b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Jia, Man</creatorcontrib><creatorcontrib>Lou, S Y</creatorcontrib><title>Searching For (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation</title><title>Communications in theoretical physics</title><addtitle>CTP</addtitle><addtitle>Commun. Theor. Phys</addtitle><description>A novel (2+1)-dimensional nonlinear Boussinesq equation is derived from a (1+1)-dimensional Boussinesq equation in nonlinear Schrödinger type based on a deformation algorithm. The integrability of the obtained (2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from the Lax pair of the (1+1)-dimensional Boussinesq equation. Because of the effects of the deformation, the (2+1)-dimensional Boussinesq equation admits a special travelling wave solution with a shape that can be deformed to be asymmetric and/or multi-valued.</description><subject>(2+1)-dimensional Boussinesq equation</subject><subject>an implicit travelling wave solution</subject><subject>deformation algorithm</subject><subject>lax integrable</subject><issn>0253-6102</issn><issn>1572-9494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVkE1LAzEQhoMoWKt3j7lZ0bWTpEk2Ry1WhYKHeg_ZfOiWdrNN2oP_3pSKJxE8zfB-DMyD0CWBOwJ1PSZc0kpN1GRsrFOqOUKDH-kYDYByVgkC9BSd5bwEACoFGaC08CbZj7Z7x7OY8IjekOvKtWvf5TZ2ZoW72K3aroTwQ9zlXNa8wX6zM9vi45DiGo_Iv0rn6CSYVfYX33OIFrPHt-lzNX99epnezyvLCN1WXNWWWAfWS--Ml4HRAJIpL6QMjeXMNkwIBYoXixMQJBTJ1MGZhjk2RHC4alPMOfmg-9SuTfrUBPSemN7j0Xs8-kCsVG4PlTb2ehl3qbyS_4pf_RK3215LrqUGyQGE7l1gX-OffJc</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Jia, Man</creator><creator>Lou, S Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9208-3450</orcidid><orcidid>https://orcid.org/0000-0002-0766-2408</orcidid></search><sort><creationdate>20230701</creationdate><title>Searching For (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation</title><author>Jia, Man ; Lou, S Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-598c1cd0ce7edae7f32f0739e677fbc53cb36690957f351061f3cba8fdab3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>(2+1)-dimensional Boussinesq equation</topic><topic>an implicit travelling wave solution</topic><topic>deformation algorithm</topic><topic>lax integrable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Man</creatorcontrib><creatorcontrib>Lou, S Y</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Man</au><au>Lou, S Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Searching For (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation</atitle><jtitle>Communications in theoretical physics</jtitle><stitle>CTP</stitle><addtitle>Commun. Theor. Phys</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>75</volume><issue>7</issue><spage>75006</spage><pages>75006-</pages><issn>0253-6102</issn><eissn>1572-9494</eissn><abstract>A novel (2+1)-dimensional nonlinear Boussinesq equation is derived from a (1+1)-dimensional Boussinesq equation in nonlinear Schrödinger type based on a deformation algorithm. The integrability of the obtained (2+1)-dimensional Boussinesq equation is guaranteed by its Lax pair obtained directly from the Lax pair of the (1+1)-dimensional Boussinesq equation. Because of the effects of the deformation, the (2+1)-dimensional Boussinesq equation admits a special travelling wave solution with a shape that can be deformed to be asymmetric and/or multi-valued.</abstract><pub>IOP Publishing</pub><doi>10.1088/1572-9494/acd99b</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9208-3450</orcidid><orcidid>https://orcid.org/0000-0002-0766-2408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof Communications in theoretical physics, 2023-07, Vol.75 (7), p.75006
issn 0253-6102
1572-9494
language eng
recordid cdi_iop_journals_10_1088_1572_9494_acd99b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects (2+1)-dimensional Boussinesq equation
an implicit travelling wave solution
deformation algorithm
lax integrable
title Searching For (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Searching%20For%20(2+1)-dimensional%20nonlinear%20Boussinesq%20equation%20from%20(1+1)-dimensional%20nonlinear%20Boussinesq%20equation&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Jia,%20Man&rft.date=2023-07-01&rft.volume=75&rft.issue=7&rft.spage=75006&rft.pages=75006-&rft.issn=0253-6102&rft.eissn=1572-9494&rft_id=info:doi/10.1088/1572-9494/acd99b&rft_dat=%3Ciop_cross%3Ectpacd99b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true