Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach
Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq-Burgers system for shallow water waves in a lake or n...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2020-09, Vol.72 (9), p.95002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 95002 |
container_title | Communications in theoretical physics |
container_volume | 72 |
creator | Gao, Xin-Yi Guo, Yong-Jiang Shan, Wen-Rui |
description | Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq-Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power. |
doi_str_mv | 10.1088/1572-9494/aba23d |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1572_9494_aba23d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ctpaba23d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c31785c455a7e4538941f8d673416b5f7958111c91b44d798d136bc228daed053</originalsourceid><addsrcrecordid>eNp9kctOxCAUhonRxPGyd8nOjVUopZelNd4SoxtdE0qpgzJQOa2TeR-fwq0vJp0xroybcwh85z9_fhA6ouSUkrI8o7xIkyqrsjPZyJS1W2j2e7WNZiTlLMkpSXfRHsALISQtcjpDn7WxxmkZcOfDAvAwD358nseucWOcDCtca2tx7-3K-YWRFk7wPQZvzeAdYOlaXH99qFc7xtMQpINJSA5mevXdWqj2I0DcAm9JPYZnHQDDCga9mJauCZhLa_0SL-WgQ6zvGrBxWGIrXzWO0NqidNgrHWujpZofoJ0u2tGHP30fPV1dPl7cJHcP17cX53eJSis2JIrRouQq41wWOuOsrDLalW1esIzmDe-KipeUUlXRJsvaoipbyvJGpWnZSt0SzvYR2eiq4AGC7kQfzCImIygRU_ZiClpMQYtN9nHkZDNifC9e_BhcNPgffvwHroZeTKAgFY_fJfq2Y9-CE5dB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Gao, Xin-Yi ; Guo, Yong-Jiang ; Shan, Wen-Rui</creator><creatorcontrib>Gao, Xin-Yi ; Guo, Yong-Jiang ; Shan, Wen-Rui</creatorcontrib><description>Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq-Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power.</description><identifier>ISSN: 0253-6102</identifier><identifier>EISSN: 1572-9494</identifier><identifier>DOI: 10.1088/1572-9494/aba23d</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bilinear forms through the binary Bell polynomials ; Boussinesq-Burgers system ; Bäcklund transformations ; lakes and ocean beaches ; shallow water waves ; solitonic solutions ; symbolic computation</subject><ispartof>Communications in theoretical physics, 2020-09, Vol.72 (9), p.95002</ispartof><rights>2020 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c31785c455a7e4538941f8d673416b5f7958111c91b44d798d136bc228daed053</citedby><cites>FETCH-LOGICAL-c293t-c31785c455a7e4538941f8d673416b5f7958111c91b44d798d136bc228daed053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1572-9494/aba23d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Gao, Xin-Yi</creatorcontrib><creatorcontrib>Guo, Yong-Jiang</creatorcontrib><creatorcontrib>Shan, Wen-Rui</creatorcontrib><title>Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach</title><title>Communications in theoretical physics</title><addtitle>CTP</addtitle><addtitle>Commun. Theor. Phys</addtitle><description>Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq-Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power.</description><subject>bilinear forms through the binary Bell polynomials</subject><subject>Boussinesq-Burgers system</subject><subject>Bäcklund transformations</subject><subject>lakes and ocean beaches</subject><subject>shallow water waves</subject><subject>solitonic solutions</subject><subject>symbolic computation</subject><issn>0253-6102</issn><issn>1572-9494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOxCAUhonRxPGyd8nOjVUopZelNd4SoxtdE0qpgzJQOa2TeR-fwq0vJp0xroybcwh85z9_fhA6ouSUkrI8o7xIkyqrsjPZyJS1W2j2e7WNZiTlLMkpSXfRHsALISQtcjpDn7WxxmkZcOfDAvAwD358nseucWOcDCtca2tx7-3K-YWRFk7wPQZvzeAdYOlaXH99qFc7xtMQpINJSA5mevXdWqj2I0DcAm9JPYZnHQDDCga9mJauCZhLa_0SL-WgQ6zvGrBxWGIrXzWO0NqidNgrHWujpZofoJ0u2tGHP30fPV1dPl7cJHcP17cX53eJSis2JIrRouQq41wWOuOsrDLalW1esIzmDe-KipeUUlXRJsvaoipbyvJGpWnZSt0SzvYR2eiq4AGC7kQfzCImIygRU_ZiClpMQYtN9nHkZDNifC9e_BhcNPgffvwHroZeTKAgFY_fJfq2Y9-CE5dB</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Gao, Xin-Yi</creator><creator>Guo, Yong-Jiang</creator><creator>Shan, Wen-Rui</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach</title><author>Gao, Xin-Yi ; Guo, Yong-Jiang ; Shan, Wen-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c31785c455a7e4538941f8d673416b5f7958111c91b44d798d136bc228daed053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bilinear forms through the binary Bell polynomials</topic><topic>Boussinesq-Burgers system</topic><topic>Bäcklund transformations</topic><topic>lakes and ocean beaches</topic><topic>shallow water waves</topic><topic>solitonic solutions</topic><topic>symbolic computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xin-Yi</creatorcontrib><creatorcontrib>Guo, Yong-Jiang</creatorcontrib><creatorcontrib>Shan, Wen-Rui</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xin-Yi</au><au>Guo, Yong-Jiang</au><au>Shan, Wen-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach</atitle><jtitle>Communications in theoretical physics</jtitle><stitle>CTP</stitle><addtitle>Commun. Theor. Phys</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>72</volume><issue>9</issue><spage>95002</spage><pages>95002-</pages><issn>0253-6102</issn><eissn>1572-9494</eissn><abstract>Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq-Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power.</abstract><pub>IOP Publishing</pub><doi>10.1088/1572-9494/aba23d</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | Communications in theoretical physics, 2020-09, Vol.72 (9), p.95002 |
issn | 0253-6102 1572-9494 |
language | eng |
recordid | cdi_iop_journals_10_1088_1572_9494_aba23d |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | bilinear forms through the binary Bell polynomials Boussinesq-Burgers system Bäcklund transformations lakes and ocean beaches shallow water waves solitonic solutions symbolic computation |
title | Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20forms%20through%20the%20binary%20Bell%20polynomials,%20N%20solitons%20and%20B%C3%A4cklund%20transformations%20of%20the%20Boussinesq-Burgers%20system%20for%20the%20shallow%20water%20waves%20in%20a%20lake%20or%20near%20an%20ocean%20beach&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Gao,%20Xin-Yi&rft.date=2020-09-01&rft.volume=72&rft.issue=9&rft.spage=95002&rft.pages=95002-&rft.issn=0253-6102&rft.eissn=1572-9494&rft_id=info:doi/10.1088/1572-9494/aba23d&rft_dat=%3Ciop_cross%3Ectpaba23d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |