Deriving time-varying cellular motility parameters via wavelet analysis
Cell migration, which is regulated by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays an indispensable role in many physiological and pathological process such as normal tissue development and cancer metastasis. However, there is a lack of rigorous and quantitative tool...
Gespeichert in:
Veröffentlicht in: | Physical biology 2021-07, Vol.18 (4), p.46007 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 46007 |
container_title | Physical biology |
container_volume | 18 |
creator | Liu, Yanping Jiao, Yang He, Da Fan, Qihui Zheng, Yu Li, Guoqiang Wang, Gao Yao, Jingru Chen, Guo Lou, Silong Shuai, Jianwei Liu, Liyu |
description | Cell migration, which is regulated by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays an indispensable role in many physiological and pathological process such as normal tissue development and cancer metastasis. However, there is a lack of rigorous and quantitative tools for analyzing the time-varying characteristics of cell migration in heterogeneous microenvironment, resulted from, e.g., the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop a wavelet-analysis approach to derive the time-dependent motility parameters from cell migration trajectories, based on the time-varying persistent random walk model. In particular, the wavelet denoising and wavelet transform are employed to analyze migration velocities and obtain the wavelet power spectrum. Subsequently, the time-dependent motility parameters are derived via Lorentzian power spectrum. Our results based on synthetic data indicate the superiority of the method for estimating the intrinsic transient motility parameters, robust against a variety of stochastic noises. We also carry out a systematic parameter study and elaborate the effects of parameter selection on the performance of the method. Moreover, we demonstrate the utility of our approach via analyzing experimental data of in vitro cell migration in distinct microenvironments, including the migration of MDA-MB-231 cells in confined micro-channel arrays and correlated migration of MCF-10A cells due to ECM-mediated mechanical coupling. Our analysis shows that our approach can be as a powerful tool to accurately derive the time-dependent motility parameters, and further analyze the time-dependent characteristics of cell migration regulated by complex microenvironment. |
doi_str_mv | 10.1088/1478-3975/abfcad |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1478_3975_abfcad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519806024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-c4dd59ae148bd0044b78a1185e87965acf674dd085f3bfb93e8d9a1fa7631d7b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwM6FMiIHQ67xsj6hAQarEArN1ndjIVdIEOynqvydRSsUAkx869_EdQi4p3FHgfE4TxsNYsHSOyuRYHJHp4ev4131CzrxfA0QiAnZKJnEsKFAOU7J80M5u7eYjaG2lwy263fDIdVl2Jbqgqltb2nYXNOiw0q12PthaDL5wq0vdBrjBcuetPycnBkuvL_bnjLw_Pb4tnsPV6_Jlcb8K8zhjbZgnRZEK1DThqgBIEsU4UspTzZnIUsxNxnoEeGpiZZSINS8EUoMsi2nBVDwjN2PfxtWfnfatrKwftsWNrjsvo5QKDhlESY_CiOau9t5pIxtnqz6gpCAHfXLwIwc_ctTXl1ztu3eq0sWh4MdXD1yPgK0bua4718f3slGScplISDIAJpvC9ODtH-C_g78BG2iIgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519806024</pqid></control><display><type>article</type><title>Deriving time-varying cellular motility parameters via wavelet analysis</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Yanping ; Jiao, Yang ; He, Da ; Fan, Qihui ; Zheng, Yu ; Li, Guoqiang ; Wang, Gao ; Yao, Jingru ; Chen, Guo ; Lou, Silong ; Shuai, Jianwei ; Liu, Liyu</creator><creatorcontrib>Liu, Yanping ; Jiao, Yang ; He, Da ; Fan, Qihui ; Zheng, Yu ; Li, Guoqiang ; Wang, Gao ; Yao, Jingru ; Chen, Guo ; Lou, Silong ; Shuai, Jianwei ; Liu, Liyu</creatorcontrib><description>Cell migration, which is regulated by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays an indispensable role in many physiological and pathological process such as normal tissue development and cancer metastasis. However, there is a lack of rigorous and quantitative tools for analyzing the time-varying characteristics of cell migration in heterogeneous microenvironment, resulted from, e.g., the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop a wavelet-analysis approach to derive the time-dependent motility parameters from cell migration trajectories, based on the time-varying persistent random walk model. In particular, the wavelet denoising and wavelet transform are employed to analyze migration velocities and obtain the wavelet power spectrum. Subsequently, the time-dependent motility parameters are derived via Lorentzian power spectrum. Our results based on synthetic data indicate the superiority of the method for estimating the intrinsic transient motility parameters, robust against a variety of stochastic noises. We also carry out a systematic parameter study and elaborate the effects of parameter selection on the performance of the method. Moreover, we demonstrate the utility of our approach via analyzing experimental data of in vitro cell migration in distinct microenvironments, including the migration of MDA-MB-231 cells in confined micro-channel arrays and correlated migration of MCF-10A cells due to ECM-mediated mechanical coupling. Our analysis shows that our approach can be as a powerful tool to accurately derive the time-dependent motility parameters, and further analyze the time-dependent characteristics of cell migration regulated by complex microenvironment.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/abfcad</identifier><identifier>PMID: 33910180</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>cell migration ; complex microenvironment ; motility parameter ; time-varying characteristics ; wavelet transform</subject><ispartof>Physical biology, 2021-07, Vol.18 (4), p.46007</ispartof><rights>2021 IOP Publishing Ltd</rights><rights>2021 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-c4dd59ae148bd0044b78a1185e87965acf674dd085f3bfb93e8d9a1fa7631d7b3</citedby><cites>FETCH-LOGICAL-c367t-c4dd59ae148bd0044b78a1185e87965acf674dd085f3bfb93e8d9a1fa7631d7b3</cites><orcidid>0000-0002-0768-1190 ; 0000-0001-9784-8240 ; 0000-0001-6501-8787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1478-3975/abfcad/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33910180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>He, Da</creatorcontrib><creatorcontrib>Fan, Qihui</creatorcontrib><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><creatorcontrib>Wang, Gao</creatorcontrib><creatorcontrib>Yao, Jingru</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Lou, Silong</creatorcontrib><creatorcontrib>Shuai, Jianwei</creatorcontrib><creatorcontrib>Liu, Liyu</creatorcontrib><title>Deriving time-varying cellular motility parameters via wavelet analysis</title><title>Physical biology</title><addtitle>PhysBio</addtitle><addtitle>Phys. Biol</addtitle><description>Cell migration, which is regulated by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays an indispensable role in many physiological and pathological process such as normal tissue development and cancer metastasis. However, there is a lack of rigorous and quantitative tools for analyzing the time-varying characteristics of cell migration in heterogeneous microenvironment, resulted from, e.g., the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop a wavelet-analysis approach to derive the time-dependent motility parameters from cell migration trajectories, based on the time-varying persistent random walk model. In particular, the wavelet denoising and wavelet transform are employed to analyze migration velocities and obtain the wavelet power spectrum. Subsequently, the time-dependent motility parameters are derived via Lorentzian power spectrum. Our results based on synthetic data indicate the superiority of the method for estimating the intrinsic transient motility parameters, robust against a variety of stochastic noises. We also carry out a systematic parameter study and elaborate the effects of parameter selection on the performance of the method. Moreover, we demonstrate the utility of our approach via analyzing experimental data of in vitro cell migration in distinct microenvironments, including the migration of MDA-MB-231 cells in confined micro-channel arrays and correlated migration of MCF-10A cells due to ECM-mediated mechanical coupling. Our analysis shows that our approach can be as a powerful tool to accurately derive the time-dependent motility parameters, and further analyze the time-dependent characteristics of cell migration regulated by complex microenvironment.</description><subject>cell migration</subject><subject>complex microenvironment</subject><subject>motility parameter</subject><subject>time-varying characteristics</subject><subject>wavelet transform</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwM6FMiIHQ67xsj6hAQarEArN1ndjIVdIEOynqvydRSsUAkx869_EdQi4p3FHgfE4TxsNYsHSOyuRYHJHp4ev4131CzrxfA0QiAnZKJnEsKFAOU7J80M5u7eYjaG2lwy263fDIdVl2Jbqgqltb2nYXNOiw0q12PthaDL5wq0vdBrjBcuetPycnBkuvL_bnjLw_Pb4tnsPV6_Jlcb8K8zhjbZgnRZEK1DThqgBIEsU4UspTzZnIUsxNxnoEeGpiZZSINS8EUoMsi2nBVDwjN2PfxtWfnfatrKwftsWNrjsvo5QKDhlESY_CiOau9t5pIxtnqz6gpCAHfXLwIwc_ctTXl1ztu3eq0sWh4MdXD1yPgK0bua4718f3slGScplISDIAJpvC9ODtH-C_g78BG2iIgg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Liu, Yanping</creator><creator>Jiao, Yang</creator><creator>He, Da</creator><creator>Fan, Qihui</creator><creator>Zheng, Yu</creator><creator>Li, Guoqiang</creator><creator>Wang, Gao</creator><creator>Yao, Jingru</creator><creator>Chen, Guo</creator><creator>Lou, Silong</creator><creator>Shuai, Jianwei</creator><creator>Liu, Liyu</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0768-1190</orcidid><orcidid>https://orcid.org/0000-0001-9784-8240</orcidid><orcidid>https://orcid.org/0000-0001-6501-8787</orcidid></search><sort><creationdate>20210701</creationdate><title>Deriving time-varying cellular motility parameters via wavelet analysis</title><author>Liu, Yanping ; Jiao, Yang ; He, Da ; Fan, Qihui ; Zheng, Yu ; Li, Guoqiang ; Wang, Gao ; Yao, Jingru ; Chen, Guo ; Lou, Silong ; Shuai, Jianwei ; Liu, Liyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-c4dd59ae148bd0044b78a1185e87965acf674dd085f3bfb93e8d9a1fa7631d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>cell migration</topic><topic>complex microenvironment</topic><topic>motility parameter</topic><topic>time-varying characteristics</topic><topic>wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>He, Da</creatorcontrib><creatorcontrib>Fan, Qihui</creatorcontrib><creatorcontrib>Zheng, Yu</creatorcontrib><creatorcontrib>Li, Guoqiang</creatorcontrib><creatorcontrib>Wang, Gao</creatorcontrib><creatorcontrib>Yao, Jingru</creatorcontrib><creatorcontrib>Chen, Guo</creatorcontrib><creatorcontrib>Lou, Silong</creatorcontrib><creatorcontrib>Shuai, Jianwei</creatorcontrib><creatorcontrib>Liu, Liyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanping</au><au>Jiao, Yang</au><au>He, Da</au><au>Fan, Qihui</au><au>Zheng, Yu</au><au>Li, Guoqiang</au><au>Wang, Gao</au><au>Yao, Jingru</au><au>Chen, Guo</au><au>Lou, Silong</au><au>Shuai, Jianwei</au><au>Liu, Liyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving time-varying cellular motility parameters via wavelet analysis</atitle><jtitle>Physical biology</jtitle><stitle>PhysBio</stitle><addtitle>Phys. Biol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>18</volume><issue>4</issue><spage>46007</spage><pages>46007-</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>Cell migration, which is regulated by intracellular signaling pathways (ICSP) and extracellular matrix (ECM), plays an indispensable role in many physiological and pathological process such as normal tissue development and cancer metastasis. However, there is a lack of rigorous and quantitative tools for analyzing the time-varying characteristics of cell migration in heterogeneous microenvironment, resulted from, e.g., the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop a wavelet-analysis approach to derive the time-dependent motility parameters from cell migration trajectories, based on the time-varying persistent random walk model. In particular, the wavelet denoising and wavelet transform are employed to analyze migration velocities and obtain the wavelet power spectrum. Subsequently, the time-dependent motility parameters are derived via Lorentzian power spectrum. Our results based on synthetic data indicate the superiority of the method for estimating the intrinsic transient motility parameters, robust against a variety of stochastic noises. We also carry out a systematic parameter study and elaborate the effects of parameter selection on the performance of the method. Moreover, we demonstrate the utility of our approach via analyzing experimental data of in vitro cell migration in distinct microenvironments, including the migration of MDA-MB-231 cells in confined micro-channel arrays and correlated migration of MCF-10A cells due to ECM-mediated mechanical coupling. Our analysis shows that our approach can be as a powerful tool to accurately derive the time-dependent motility parameters, and further analyze the time-dependent characteristics of cell migration regulated by complex microenvironment.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33910180</pmid><doi>10.1088/1478-3975/abfcad</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0768-1190</orcidid><orcidid>https://orcid.org/0000-0001-9784-8240</orcidid><orcidid>https://orcid.org/0000-0001-6501-8787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-3975 |
ispartof | Physical biology, 2021-07, Vol.18 (4), p.46007 |
issn | 1478-3975 1478-3967 1478-3975 |
language | eng |
recordid | cdi_iop_journals_10_1088_1478_3975_abfcad |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | cell migration complex microenvironment motility parameter time-varying characteristics wavelet transform |
title | Deriving time-varying cellular motility parameters via wavelet analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20time-varying%20cellular%20motility%20parameters%20via%20wavelet%20analysis&rft.jtitle=Physical%20biology&rft.au=Liu,%20Yanping&rft.date=2021-07-01&rft.volume=18&rft.issue=4&rft.spage=46007&rft.pages=46007-&rft.issn=1478-3975&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/abfcad&rft_dat=%3Cproquest_iop_j%3E2519806024%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519806024&rft_id=info:pmid/33910180&rfr_iscdi=true |