Simulation of 1D atmospheric pressure dielectric barrier discharge in argon

This work aims at modelling an atmospheric-pressure homogeneous barrier discharge in argon, using a time-dependent 1D fluid model coupled to the electric field and plasmo-chemical kinetic equations. The model is chosen to mimic a discharge when a sinusoidal 1 kV voltage at 10 MHz is applied to the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-06, Vol.99 (6), p.65521
Hauptverfasser: Crispim, L W S, da Silva, C D, Amorim, J, Ballester, M Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65521
container_title Physica scripta
container_volume 99
creator Crispim, L W S
da Silva, C D
Amorim, J
Ballester, M Y
description This work aims at modelling an atmospheric-pressure homogeneous barrier discharge in argon, using a time-dependent 1D fluid model coupled to the electric field and plasmo-chemical kinetic equations. The model is chosen to mimic a discharge when a sinusoidal 1 kV voltage at 10 MHz is applied to the terminals. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions is treated at the microscopic level. The macroscopic model is represented by a set of coupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modelling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The spatial and temporal evolution of such species and electron transport parameters are presented and discussed.
doi_str_mv 10.1088/1402-4896/ad44ee
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_ad44ee</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad44ee</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-b3e31dde0571e66e6f8fce575d12a5f1f87341d1644881803dced0a12a08bea33</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHINQbO45zROVXVOIAnC3XXlNXbRzZyYG3J1EQN04jfbuz2hlCroHdAlNqBYKVhVCNXBknBOIJWfyhU7JgjEOhGtGck4uc94yVspTNgry-h-NwMH2ILY2ewj01_THmbocpWNolzHlISF3AA9p-YluTUsA0omx3Jn0hDS0dNbaX5MybQ8arX12Sz8eHj_VzsXl7elnfbQpbct4XW44cnENW1YBSovTKW6zqykFpKg9e1VyAAymEUqAYdxYdM-OQqS0azpeEzXdtijkn9LpL4WjStwampzL0lFxPyfVcxmi5mS0hdnofh9SOD_6__gOJOGGx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of 1D atmospheric pressure dielectric barrier discharge in argon</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Crispim, L W S ; da Silva, C D ; Amorim, J ; Ballester, M Y</creator><creatorcontrib>Crispim, L W S ; da Silva, C D ; Amorim, J ; Ballester, M Y</creatorcontrib><description>This work aims at modelling an atmospheric-pressure homogeneous barrier discharge in argon, using a time-dependent 1D fluid model coupled to the electric field and plasmo-chemical kinetic equations. The model is chosen to mimic a discharge when a sinusoidal 1 kV voltage at 10 MHz is applied to the terminals. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions is treated at the microscopic level. The macroscopic model is represented by a set of coupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modelling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The spatial and temporal evolution of such species and electron transport parameters are presented and discussed.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad44ee</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atmospheric ; DBD ; dielectric ; pressure ; Simulations</subject><ispartof>Physica scripta, 2024-06, Vol.99 (6), p.65521</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-b3e31dde0571e66e6f8fce575d12a5f1f87341d1644881803dced0a12a08bea33</cites><orcidid>0000-0002-9250-4681 ; 0000-0002-5475-8808 ; 0000-0002-6835-1654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad44ee/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Crispim, L W S</creatorcontrib><creatorcontrib>da Silva, C D</creatorcontrib><creatorcontrib>Amorim, J</creatorcontrib><creatorcontrib>Ballester, M Y</creatorcontrib><title>Simulation of 1D atmospheric pressure dielectric barrier discharge in argon</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>This work aims at modelling an atmospheric-pressure homogeneous barrier discharge in argon, using a time-dependent 1D fluid model coupled to the electric field and plasmo-chemical kinetic equations. The model is chosen to mimic a discharge when a sinusoidal 1 kV voltage at 10 MHz is applied to the terminals. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions is treated at the microscopic level. The macroscopic model is represented by a set of coupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modelling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The spatial and temporal evolution of such species and electron transport parameters are presented and discussed.</description><subject>atmospheric</subject><subject>DBD</subject><subject>dielectric</subject><subject>pressure</subject><subject>Simulations</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHINQbO45zROVXVOIAnC3XXlNXbRzZyYG3J1EQN04jfbuz2hlCroHdAlNqBYKVhVCNXBknBOIJWfyhU7JgjEOhGtGck4uc94yVspTNgry-h-NwMH2ILY2ewj01_THmbocpWNolzHlISF3AA9p-YluTUsA0omx3Jn0hDS0dNbaX5MybQ8arX12Sz8eHj_VzsXl7elnfbQpbct4XW44cnENW1YBSovTKW6zqykFpKg9e1VyAAymEUqAYdxYdM-OQqS0azpeEzXdtijkn9LpL4WjStwampzL0lFxPyfVcxmi5mS0hdnofh9SOD_6__gOJOGGx</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Crispim, L W S</creator><creator>da Silva, C D</creator><creator>Amorim, J</creator><creator>Ballester, M Y</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9250-4681</orcidid><orcidid>https://orcid.org/0000-0002-5475-8808</orcidid><orcidid>https://orcid.org/0000-0002-6835-1654</orcidid></search><sort><creationdate>20240601</creationdate><title>Simulation of 1D atmospheric pressure dielectric barrier discharge in argon</title><author>Crispim, L W S ; da Silva, C D ; Amorim, J ; Ballester, M Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-b3e31dde0571e66e6f8fce575d12a5f1f87341d1644881803dced0a12a08bea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>atmospheric</topic><topic>DBD</topic><topic>dielectric</topic><topic>pressure</topic><topic>Simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crispim, L W S</creatorcontrib><creatorcontrib>da Silva, C D</creatorcontrib><creatorcontrib>Amorim, J</creatorcontrib><creatorcontrib>Ballester, M Y</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crispim, L W S</au><au>da Silva, C D</au><au>Amorim, J</au><au>Ballester, M Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of 1D atmospheric pressure dielectric barrier discharge in argon</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>99</volume><issue>6</issue><spage>65521</spage><pages>65521-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>This work aims at modelling an atmospheric-pressure homogeneous barrier discharge in argon, using a time-dependent 1D fluid model coupled to the electric field and plasmo-chemical kinetic equations. The model is chosen to mimic a discharge when a sinusoidal 1 kV voltage at 10 MHz is applied to the terminals. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions is treated at the microscopic level. The macroscopic model is represented by a set of coupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modelling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The spatial and temporal evolution of such species and electron transport parameters are presented and discussed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad44ee</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9250-4681</orcidid><orcidid>https://orcid.org/0000-0002-5475-8808</orcidid><orcidid>https://orcid.org/0000-0002-6835-1654</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2024-06, Vol.99 (6), p.65521
issn 0031-8949
1402-4896
language eng
recordid cdi_iop_journals_10_1088_1402_4896_ad44ee
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atmospheric
DBD
dielectric
pressure
Simulations
title Simulation of 1D atmospheric pressure dielectric barrier discharge in argon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%201D%20atmospheric%20pressure%20dielectric%20barrier%20discharge%20in%20argon&rft.jtitle=Physica%20scripta&rft.au=Crispim,%20L%20W%20S&rft.date=2024-06-01&rft.volume=99&rft.issue=6&rft.spage=65521&rft.pages=65521-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad44ee&rft_dat=%3Ciop_cross%3Epsad44ee%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true