Uncertain M-fractional differential problems: existence, uniqueness, and approximations using Hilbert reproducing technique provisioner with the case application: series resistor-inductor circuit

In this article, the principle of characterization is proposed as a new tool for solving uncertain M-fractional differential problems under firmly generalized differentiability. The study demonstrates the solvability of such issues by presenting theoretical implications on the existence and uniquene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-02, Vol.99 (2), p.25220
Hauptverfasser: Maayah, Banan, Arqub, Omar Abu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25220
container_title Physica scripta
container_volume 99
creator Maayah, Banan
Arqub, Omar Abu
description In this article, the principle of characterization is proposed as a new tool for solving uncertain M-fractional differential problems under firmly generalized differentiability. The study demonstrates the solvability of such issues by presenting theoretical implications on the existence and uniqueness of two uncertain M-solutions. Additionally, the study provides quantitative solutions in a novel uncertain framework using two Hilbert spaces that are combined through the kernel-based Gram-Schmidt orthogonalization technique. The proposed uncertain problems and algorithms are examined, with a focus on analyzing the solution collection, assessing convergence, and evaluating errors. The debatable Hilbert approach can solve numerous M-fractional differential problems under uncertainty, and the numerical results demonstrate the accuracy and effectiveness of the algorithm. Based on the figures, tables, and quantitative analysis, our work significantly enhances mathematical tools for solving complex M-fractional differential problems under uncertainty. By utilizing the numerical pseudocode; this advancement has the potential to make an impact on various scientific and engineering fields. The final section presents numerical notes, along with recommendations for future research directions. Additionally, an evaluation of the study’s findings is provided based on the conducted analysis.
doi_str_mv 10.1088/1402-4896/ad1738
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_ad1738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad1738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f63c3b43d465cb7c07f7e507312275495dbae49791dde52c3dd35bfed009fe833</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EEuWxZ-kPaMCJ8-wOVbwkEBtYR449poNSp3gcKN_Hj-FQxI6VxzP3Hst3GDtLxXkq6voizUWW5HVTXiiTVrLeY7O_1j6bCSHTpG7y5pAdEb0KkZVZ2czY17PT4INCxx8S65UOODjVc4PWggcXMF42fuh6WNOCwxYpQLTM-ejwbQQHRHOunOFqE2VbXKuJQHwkdC_8Fvsu4rmHODSjnnoB9OrHO3HfkaIcPP_AsOJhBVwrggnWo_5BLTiBR6DIoPj44BN0kRQLrtHrEcMJO7CqJzj9PY_Z8_XV0_I2uX-8uVte3ic6q0VIbCm17HJp8rLQXaVFZSsoRCXTLKuKvClMpyBvqiY1BopMS2Nk0VkwQjQWaimPmdhxtR-IPNh24-N__WebinZaQjsl3k6Jt7slRMt8Z8Fh074Oo4_Z0v_yb4Atj8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertain M-fractional differential problems: existence, uniqueness, and approximations using Hilbert reproducing technique provisioner with the case application: series resistor-inductor circuit</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Maayah, Banan ; Arqub, Omar Abu</creator><creatorcontrib>Maayah, Banan ; Arqub, Omar Abu</creatorcontrib><description>In this article, the principle of characterization is proposed as a new tool for solving uncertain M-fractional differential problems under firmly generalized differentiability. The study demonstrates the solvability of such issues by presenting theoretical implications on the existence and uniqueness of two uncertain M-solutions. Additionally, the study provides quantitative solutions in a novel uncertain framework using two Hilbert spaces that are combined through the kernel-based Gram-Schmidt orthogonalization technique. The proposed uncertain problems and algorithms are examined, with a focus on analyzing the solution collection, assessing convergence, and evaluating errors. The debatable Hilbert approach can solve numerous M-fractional differential problems under uncertainty, and the numerical results demonstrate the accuracy and effectiveness of the algorithm. Based on the figures, tables, and quantitative analysis, our work significantly enhances mathematical tools for solving complex M-fractional differential problems under uncertainty. By utilizing the numerical pseudocode; this advancement has the potential to make an impact on various scientific and engineering fields. The final section presents numerical notes, along with recommendations for future research directions. Additionally, an evaluation of the study’s findings is provided based on the conducted analysis.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad1738</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crisp M-fractional differential model ; existence and uniqueness of uncertain M-solutions ; Hilbert reproducing technique ; series resistor-inductor circuit ; uncertain M-fractional differential problem</subject><ispartof>Physica scripta, 2024-02, Vol.99 (2), p.25220</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f63c3b43d465cb7c07f7e507312275495dbae49791dde52c3dd35bfed009fe833</citedby><cites>FETCH-LOGICAL-c280t-f63c3b43d465cb7c07f7e507312275495dbae49791dde52c3dd35bfed009fe833</cites><orcidid>0000-0001-9526-6095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad1738/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Maayah, Banan</creatorcontrib><creatorcontrib>Arqub, Omar Abu</creatorcontrib><title>Uncertain M-fractional differential problems: existence, uniqueness, and approximations using Hilbert reproducing technique provisioner with the case application: series resistor-inductor circuit</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>In this article, the principle of characterization is proposed as a new tool for solving uncertain M-fractional differential problems under firmly generalized differentiability. The study demonstrates the solvability of such issues by presenting theoretical implications on the existence and uniqueness of two uncertain M-solutions. Additionally, the study provides quantitative solutions in a novel uncertain framework using two Hilbert spaces that are combined through the kernel-based Gram-Schmidt orthogonalization technique. The proposed uncertain problems and algorithms are examined, with a focus on analyzing the solution collection, assessing convergence, and evaluating errors. The debatable Hilbert approach can solve numerous M-fractional differential problems under uncertainty, and the numerical results demonstrate the accuracy and effectiveness of the algorithm. Based on the figures, tables, and quantitative analysis, our work significantly enhances mathematical tools for solving complex M-fractional differential problems under uncertainty. By utilizing the numerical pseudocode; this advancement has the potential to make an impact on various scientific and engineering fields. The final section presents numerical notes, along with recommendations for future research directions. Additionally, an evaluation of the study’s findings is provided based on the conducted analysis.</description><subject>crisp M-fractional differential model</subject><subject>existence and uniqueness of uncertain M-solutions</subject><subject>Hilbert reproducing technique</subject><subject>series resistor-inductor circuit</subject><subject>uncertain M-fractional differential problem</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRS0EEuWxZ-kPaMCJ8-wOVbwkEBtYR449poNSp3gcKN_Hj-FQxI6VxzP3Hst3GDtLxXkq6voizUWW5HVTXiiTVrLeY7O_1j6bCSHTpG7y5pAdEb0KkZVZ2czY17PT4INCxx8S65UOODjVc4PWggcXMF42fuh6WNOCwxYpQLTM-ejwbQQHRHOunOFqE2VbXKuJQHwkdC_8Fvsu4rmHODSjnnoB9OrHO3HfkaIcPP_AsOJhBVwrggnWo_5BLTiBR6DIoPj44BN0kRQLrtHrEcMJO7CqJzj9PY_Z8_XV0_I2uX-8uVte3ic6q0VIbCm17HJp8rLQXaVFZSsoRCXTLKuKvClMpyBvqiY1BopMS2Nk0VkwQjQWaimPmdhxtR-IPNh24-N__WebinZaQjsl3k6Jt7slRMt8Z8Fh074Oo4_Z0v_yb4Atj8U</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Maayah, Banan</creator><creator>Arqub, Omar Abu</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9526-6095</orcidid></search><sort><creationdate>20240201</creationdate><title>Uncertain M-fractional differential problems: existence, uniqueness, and approximations using Hilbert reproducing technique provisioner with the case application: series resistor-inductor circuit</title><author>Maayah, Banan ; Arqub, Omar Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f63c3b43d465cb7c07f7e507312275495dbae49791dde52c3dd35bfed009fe833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>crisp M-fractional differential model</topic><topic>existence and uniqueness of uncertain M-solutions</topic><topic>Hilbert reproducing technique</topic><topic>series resistor-inductor circuit</topic><topic>uncertain M-fractional differential problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maayah, Banan</creatorcontrib><creatorcontrib>Arqub, Omar Abu</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maayah, Banan</au><au>Arqub, Omar Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertain M-fractional differential problems: existence, uniqueness, and approximations using Hilbert reproducing technique provisioner with the case application: series resistor-inductor circuit</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>99</volume><issue>2</issue><spage>25220</spage><pages>25220-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>In this article, the principle of characterization is proposed as a new tool for solving uncertain M-fractional differential problems under firmly generalized differentiability. The study demonstrates the solvability of such issues by presenting theoretical implications on the existence and uniqueness of two uncertain M-solutions. Additionally, the study provides quantitative solutions in a novel uncertain framework using two Hilbert spaces that are combined through the kernel-based Gram-Schmidt orthogonalization technique. The proposed uncertain problems and algorithms are examined, with a focus on analyzing the solution collection, assessing convergence, and evaluating errors. The debatable Hilbert approach can solve numerous M-fractional differential problems under uncertainty, and the numerical results demonstrate the accuracy and effectiveness of the algorithm. Based on the figures, tables, and quantitative analysis, our work significantly enhances mathematical tools for solving complex M-fractional differential problems under uncertainty. By utilizing the numerical pseudocode; this advancement has the potential to make an impact on various scientific and engineering fields. The final section presents numerical notes, along with recommendations for future research directions. Additionally, an evaluation of the study’s findings is provided based on the conducted analysis.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad1738</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-9526-6095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2024-02, Vol.99 (2), p.25220
issn 0031-8949
1402-4896
language eng
recordid cdi_iop_journals_10_1088_1402_4896_ad1738
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects crisp M-fractional differential model
existence and uniqueness of uncertain M-solutions
Hilbert reproducing technique
series resistor-inductor circuit
uncertain M-fractional differential problem
title Uncertain M-fractional differential problems: existence, uniqueness, and approximations using Hilbert reproducing technique provisioner with the case application: series resistor-inductor circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertain%20M-fractional%20differential%20problems:%20existence,%20uniqueness,%20and%20approximations%20using%20Hilbert%20reproducing%20technique%20provisioner%20with%20the%20case%20application:%20series%20resistor-inductor%20circuit&rft.jtitle=Physica%20scripta&rft.au=Maayah,%20Banan&rft.date=2024-02-01&rft.volume=99&rft.issue=2&rft.spage=25220&rft.pages=25220-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad1738&rft_dat=%3Ciop_cross%3Epsad1738%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true