Geometric structures of Morris-Thorne wormhole metric in f(, ℒ m ) gravity and energy conditions
The aim of this manuscript is to study the traversable wormhole (WH) geometries in the curvature matter coupling gravity. We investigate static spherically symmetric Morris-Thorne WHs within the context of f ( , L m ) gravity. To accomplish this, we examine the WH model in four different cases (i)...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2023-06, Vol.98 (6), p.65020 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 65020 |
container_title | Physica scripta |
container_volume | 98 |
creator | Venkatesha, V Kavya, N S Sahoo, P K |
description | The aim of this manuscript is to study the traversable wormhole (WH) geometries in the curvature matter coupling gravity. We investigate static spherically symmetric Morris-Thorne WHs within the context of
f
(
,
L
m
)
gravity. To accomplish this, we examine the WH model in four different cases (i) linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
α
+
β
L
m
with anisotropic matter distribution having the relation
p
r
=
mp
t
(ii) linear
f
(
,
L
m
)
model having anisotropic matter distribution along with the equation of state parameter,
p
r
=
ω
ρ
, (iii) non-linear model
f
(
,
L
m
)
=
1
2
+
L
m
η
with specific form of energy density and (iv) non-linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
1
2
+
(
1
+
ξ
)
L
m
with isotropic matter distribution and having the linear relation between pressure and energy density,
p
=
ω
ρ
. Additionally, in the latter case, we consider a specific power-law shape function
b
(
r
)
=
r
0
r
0
r
n
. Furthermore, we analyze the energy conditions for each WH model to verify their physical viability. As a novel outcome, we can see the validation of the null energy condition for the
f
(
,
L
m
)
model that suggests ruling out the necessity of exotic matter for the traversability of the WH. At last, an embedding diagram for each model is illustrated that describes the WH geometry. |
doi_str_mv | 10.1088/1402-4896/acd483 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_acd483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacd483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d47d1e350df7ab9e82591855e476aa595ae54c2849ad228e4530a7ebceb1ad853</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKt7l1mJQscmmWQmWUrRKlTc1HVIkzdtSmdSkqnSvQvXfpAf4wf4Dba0uNLVg8u5l8dB6JySa0qk7FNOWMalKvrGOi7zA9T5jQ5Rh5CcZlJxdYxOUpoTwgpWqA6CIYQa2ugtTm1c2XYVIeFQ4ccQo0_ZeBZiA_g1xHoWFoD3rG9wdfn9_tnDX28fuMZXeBrNi2_X2DQOQwNxusY2NM63PjTpFB1VZpHgbH-76Pnudjy4z0ZPw4fBzSizOaVt5njpKOSCuKo0EwWSCUWlEMDLwhihhAHBLZNcGceYBC5yYkqYWJhQ46TIu4jsdm0MKUWo9DL62sS1pkRvNemtE711oneaNpWLXcWHpZ6HVWw2D-pl0krqQpNCEEb00lUbsPcH-O_uDy03eN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric structures of Morris-Thorne wormhole metric in f(, ℒ m ) gravity and energy conditions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Venkatesha, V ; Kavya, N S ; Sahoo, P K</creator><creatorcontrib>Venkatesha, V ; Kavya, N S ; Sahoo, P K</creatorcontrib><description>The aim of this manuscript is to study the traversable wormhole (WH) geometries in the curvature matter coupling gravity. We investigate static spherically symmetric Morris-Thorne WHs within the context of
f
(
,
L
m
)
gravity. To accomplish this, we examine the WH model in four different cases (i) linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
α
+
β
L
m
with anisotropic matter distribution having the relation
p
r
=
mp
t
(ii) linear
f
(
,
L
m
)
model having anisotropic matter distribution along with the equation of state parameter,
p
r
=
ω
ρ
, (iii) non-linear model
f
(
,
L
m
)
=
1
2
+
L
m
η
with specific form of energy density and (iv) non-linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
1
2
+
(
1
+
ξ
)
L
m
with isotropic matter distribution and having the linear relation between pressure and energy density,
p
=
ω
ρ
. Additionally, in the latter case, we consider a specific power-law shape function
b
(
r
)
=
r
0
r
0
r
n
. Furthermore, we analyze the energy conditions for each WH model to verify their physical viability. As a novel outcome, we can see the validation of the null energy condition for the
f
(
,
L
m
)
model that suggests ruling out the necessity of exotic matter for the traversability of the WH. At last, an embedding diagram for each model is illustrated that describes the WH geometry.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acd483</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>embedding diagram ; energy conditions ; gravity ; traversable wormhole</subject><ispartof>Physica scripta, 2023-06, Vol.98 (6), p.65020</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d47d1e350df7ab9e82591855e476aa595ae54c2849ad228e4530a7ebceb1ad853</citedby><cites>FETCH-LOGICAL-c311t-d47d1e350df7ab9e82591855e476aa595ae54c2849ad228e4530a7ebceb1ad853</cites><orcidid>0000-0003-2130-8832 ; 0000-0002-2799-2535 ; 0000-0001-8561-130X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/acd483/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27926,27927,53848,53895</link.rule.ids></links><search><creatorcontrib>Venkatesha, V</creatorcontrib><creatorcontrib>Kavya, N S</creatorcontrib><creatorcontrib>Sahoo, P K</creatorcontrib><title>Geometric structures of Morris-Thorne wormhole metric in f(, ℒ m ) gravity and energy conditions</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The aim of this manuscript is to study the traversable wormhole (WH) geometries in the curvature matter coupling gravity. We investigate static spherically symmetric Morris-Thorne WHs within the context of
f
(
,
L
m
)
gravity. To accomplish this, we examine the WH model in four different cases (i) linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
α
+
β
L
m
with anisotropic matter distribution having the relation
p
r
=
mp
t
(ii) linear
f
(
,
L
m
)
model having anisotropic matter distribution along with the equation of state parameter,
p
r
=
ω
ρ
, (iii) non-linear model
f
(
,
L
m
)
=
1
2
+
L
m
η
with specific form of energy density and (iv) non-linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
1
2
+
(
1
+
ξ
)
L
m
with isotropic matter distribution and having the linear relation between pressure and energy density,
p
=
ω
ρ
. Additionally, in the latter case, we consider a specific power-law shape function
b
(
r
)
=
r
0
r
0
r
n
. Furthermore, we analyze the energy conditions for each WH model to verify their physical viability. As a novel outcome, we can see the validation of the null energy condition for the
f
(
,
L
m
)
model that suggests ruling out the necessity of exotic matter for the traversability of the WH. At last, an embedding diagram for each model is illustrated that describes the WH geometry.</description><subject>embedding diagram</subject><subject>energy conditions</subject><subject>gravity</subject><subject>traversable wormhole</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKt7l1mJQscmmWQmWUrRKlTc1HVIkzdtSmdSkqnSvQvXfpAf4wf4Dba0uNLVg8u5l8dB6JySa0qk7FNOWMalKvrGOi7zA9T5jQ5Rh5CcZlJxdYxOUpoTwgpWqA6CIYQa2ugtTm1c2XYVIeFQ4ccQo0_ZeBZiA_g1xHoWFoD3rG9wdfn9_tnDX28fuMZXeBrNi2_X2DQOQwNxusY2NM63PjTpFB1VZpHgbH-76Pnudjy4z0ZPw4fBzSizOaVt5njpKOSCuKo0EwWSCUWlEMDLwhihhAHBLZNcGceYBC5yYkqYWJhQ46TIu4jsdm0MKUWo9DL62sS1pkRvNemtE711oneaNpWLXcWHpZ6HVWw2D-pl0krqQpNCEEb00lUbsPcH-O_uDy03eN8</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Venkatesha, V</creator><creator>Kavya, N S</creator><creator>Sahoo, P K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2130-8832</orcidid><orcidid>https://orcid.org/0000-0002-2799-2535</orcidid><orcidid>https://orcid.org/0000-0001-8561-130X</orcidid></search><sort><creationdate>20230601</creationdate><title>Geometric structures of Morris-Thorne wormhole metric in f(, ℒ m ) gravity and energy conditions</title><author>Venkatesha, V ; Kavya, N S ; Sahoo, P K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d47d1e350df7ab9e82591855e476aa595ae54c2849ad228e4530a7ebceb1ad853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>embedding diagram</topic><topic>energy conditions</topic><topic>gravity</topic><topic>traversable wormhole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatesha, V</creatorcontrib><creatorcontrib>Kavya, N S</creatorcontrib><creatorcontrib>Sahoo, P K</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatesha, V</au><au>Kavya, N S</au><au>Sahoo, P K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric structures of Morris-Thorne wormhole metric in f(, ℒ m ) gravity and energy conditions</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>98</volume><issue>6</issue><spage>65020</spage><pages>65020-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The aim of this manuscript is to study the traversable wormhole (WH) geometries in the curvature matter coupling gravity. We investigate static spherically symmetric Morris-Thorne WHs within the context of
f
(
,
L
m
)
gravity. To accomplish this, we examine the WH model in four different cases (i) linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
α
+
β
L
m
with anisotropic matter distribution having the relation
p
r
=
mp
t
(ii) linear
f
(
,
L
m
)
model having anisotropic matter distribution along with the equation of state parameter,
p
r
=
ω
ρ
, (iii) non-linear model
f
(
,
L
m
)
=
1
2
+
L
m
η
with specific form of energy density and (iv) non-linear
f
(
,
L
m
)
model,
f
(
,
L
m
)
=
1
2
+
(
1
+
ξ
)
L
m
with isotropic matter distribution and having the linear relation between pressure and energy density,
p
=
ω
ρ
. Additionally, in the latter case, we consider a specific power-law shape function
b
(
r
)
=
r
0
r
0
r
n
. Furthermore, we analyze the energy conditions for each WH model to verify their physical viability. As a novel outcome, we can see the validation of the null energy condition for the
f
(
,
L
m
)
model that suggests ruling out the necessity of exotic matter for the traversability of the WH. At last, an embedding diagram for each model is illustrated that describes the WH geometry.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acd483</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2130-8832</orcidid><orcidid>https://orcid.org/0000-0002-2799-2535</orcidid><orcidid>https://orcid.org/0000-0001-8561-130X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2023-06, Vol.98 (6), p.65020 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_iop_journals_10_1088_1402_4896_acd483 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | embedding diagram energy conditions gravity traversable wormhole |
title | Geometric structures of Morris-Thorne wormhole metric in f(, ℒ m ) gravity and energy conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20structures%20of%20Morris-Thorne%20wormhole%20metric%20in%20f(%EE%88%BE,%20%E2%84%92%20m%20)%20gravity%20and%20energy%20conditions&rft.jtitle=Physica%20scripta&rft.au=Venkatesha,%20V&rft.date=2023-06-01&rft.volume=98&rft.issue=6&rft.spage=65020&rft.pages=65020-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acd483&rft_dat=%3Ciop_cross%3Epsacd483%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |