Non-Hermitian skin effect in two dimensional continuous systems

An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-01, Vol.98 (1), p.15005
Hauptverfasser: Yuce, C, Ramezani, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15005
container_title Physica scripta
container_volume 98
creator Yuce, C
Ramezani, H
description An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional Schrödinger equation. We find that inseparable eigenfunctions for separable nonreciprocal Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be clustered at the point where the imaginary vector potential is minimum in a confined system.
doi_str_mv 10.1088/1402-4896/aca43b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1402_4896_aca43b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psaca43b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8bd2a57cc0c7a91081d0deb2a129a39bd09bbcd27b8561089c67b13dcaea287b3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMoWFfvHnvyZN1J0o_kJLKoKyx60XPIVyHrNimdLrL_vV0qnsTTDDO_N8x7hFxTuKMgxJKWwIpSyHqprS65OSHZ7-iUZACcFkKW8pxcIG4BWM1qmZH71xSLtR-6MAYdc_wMMfdt6-2YT934lXIXOh8xpKh3uU1xDHGf9pjjAUff4SU5a_UO_dVPXZCPp8f31brYvD2_rB42heWUjoUwjumqsRZso-X0MHXgvGGaMqm5NA6kMdaxxoiqntbS1o2h3FntNRON4QsC8107JMTBt6ofQqeHg6KgjgGoo1t1dKvmACbJ7SwJqVfbtB8mB_gffvMH3qOSE6yAVgCV6l3LvwG8VmrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Hermitian skin effect in two dimensional continuous systems</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yuce, C ; Ramezani, H</creator><creatorcontrib>Yuce, C ; Ramezani, H</creatorcontrib><description>An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional Schrödinger equation. We find that inseparable eigenfunctions for separable nonreciprocal Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be clustered at the point where the imaginary vector potential is minimum in a confined system.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/aca43b</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>nonhermitian skin effect ; nonhermitian topological phase ; spectral topology</subject><ispartof>Physica scripta, 2023-01, Vol.98 (1), p.15005</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-8bd2a57cc0c7a91081d0deb2a129a39bd09bbcd27b8561089c67b13dcaea287b3</citedby><cites>FETCH-LOGICAL-c311t-8bd2a57cc0c7a91081d0deb2a129a39bd09bbcd27b8561089c67b13dcaea287b3</cites><orcidid>0000-0002-5288-5440 ; 0000-0003-4482-1786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/aca43b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Yuce, C</creatorcontrib><creatorcontrib>Ramezani, H</creatorcontrib><title>Non-Hermitian skin effect in two dimensional continuous systems</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional Schrödinger equation. We find that inseparable eigenfunctions for separable nonreciprocal Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be clustered at the point where the imaginary vector potential is minimum in a confined system.</description><subject>nonhermitian skin effect</subject><subject>nonhermitian topological phase</subject><subject>spectral topology</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMoWFfvHnvyZN1J0o_kJLKoKyx60XPIVyHrNimdLrL_vV0qnsTTDDO_N8x7hFxTuKMgxJKWwIpSyHqprS65OSHZ7-iUZACcFkKW8pxcIG4BWM1qmZH71xSLtR-6MAYdc_wMMfdt6-2YT934lXIXOh8xpKh3uU1xDHGf9pjjAUff4SU5a_UO_dVPXZCPp8f31brYvD2_rB42heWUjoUwjumqsRZso-X0MHXgvGGaMqm5NA6kMdaxxoiqntbS1o2h3FntNRON4QsC8107JMTBt6ofQqeHg6KgjgGoo1t1dKvmACbJ7SwJqVfbtB8mB_gffvMH3qOSE6yAVgCV6l3LvwG8VmrQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yuce, C</creator><creator>Ramezani, H</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5288-5440</orcidid><orcidid>https://orcid.org/0000-0003-4482-1786</orcidid></search><sort><creationdate>20230101</creationdate><title>Non-Hermitian skin effect in two dimensional continuous systems</title><author>Yuce, C ; Ramezani, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8bd2a57cc0c7a91081d0deb2a129a39bd09bbcd27b8561089c67b13dcaea287b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>nonhermitian skin effect</topic><topic>nonhermitian topological phase</topic><topic>spectral topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuce, C</creatorcontrib><creatorcontrib>Ramezani, H</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuce, C</au><au>Ramezani, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Hermitian skin effect in two dimensional continuous systems</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>98</volume><issue>1</issue><spage>15005</spage><pages>15005-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>An extensive number of the eigenstates can become exponentially localized at one boundary of nonreciprocal non-Hermitian systems. This effect is known as the non-Hermitian skin effect and has been studied mostly in tight-binding lattices. To extend the skin effect to continues systems beyond 1D, we introduce a quadratic imaginary vector potential in the continuous two dimensional Schrödinger equation. We find that inseparable eigenfunctions for separable nonreciprocal Hamiltonians appear under infinite boundary conditions. Introducing boundaries destroy them and hence they can only be used as quasi-stationary states in practice. We show that all eigenstates can be clustered at the point where the imaginary vector potential is minimum in a confined system.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/aca43b</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5288-5440</orcidid><orcidid>https://orcid.org/0000-0003-4482-1786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2023-01, Vol.98 (1), p.15005
issn 0031-8949
1402-4896
language eng
recordid cdi_iop_journals_10_1088_1402_4896_aca43b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects nonhermitian skin effect
nonhermitian topological phase
spectral topology
title Non-Hermitian skin effect in two dimensional continuous systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Hermitian%20skin%20effect%20in%20two%20dimensional%20continuous%20systems&rft.jtitle=Physica%20scripta&rft.au=Yuce,%20C&rft.date=2023-01-01&rft.volume=98&rft.issue=1&rft.spage=15005&rft.pages=15005-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/aca43b&rft_dat=%3Ciop_cross%3Epsaca43b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true